TITLE

INSTITUTION SPONS AGENCY

PUB DATE CONTRACT NOTE

AVAILABLE FROM

PUB TYPE

EDRS PRICE
DESCRIPTORS

Personnel Needs and Training for Biomedical and Behavioral Research. The 1985 Report of the Committee on National Needs Fer Biomedical and Behavioral Research Personnel.
Institute of Medicine (NAS), Washington, D.C. National Institutes of Health (DHHS), Bethesda, Md.

85
N01-OD-4-2102
274p.; For a related report, see SE 047 202; for an earlier overall report, see ED 241264.
Committee on National Needs for Biomedical and Behavioral Research Personnel, Institute of Medicine, National Academy of Sciences, 2101 Constitution Ave., NW, JH-640, Washington, D.C. 20418.
Reports - Evaluative/Feasibility (142) -- Reports Research/Technical (143)

MFOl/PCll Plus Postage.
Behavioral Science Research; *Biomedicine; Dentists; Government Role; *Graduate Medical Education; *Health Personnel; Higher Education; Madical Education; Medical Research; *Medical Services; *Medicine; Nursing Education; Physicians; Professional Personnel; *Researchers; Scientists; Trend Analysis

ABSTRACT

Designed to provide assistance in the assessment of the need for biomedical and behavioral research personnel, this report presents research findings related to specific medical careers. The review includes an examination of the system under which biomedical and behavioral sciencists are trained for research careers and the United States government programs that support them. An introductory chapter provides an overview of the assessment procedures, findings, and recommendations. Specific study results are discussed for: (l) the clinical sciences (identifying trends in medical and dental schools); (2) basic biomedical sciences (including a survey of biotechnology firms and a market outlook for biomedical Ph.D.s); (3) behavioral sciences (explaining current supply/demand indicators); (4) health services research (providing definitions and examples of current health services research and identifying funding sources for this area); and (5) nursing research (examining doctoral programs and trends in nursing). A bibliography contains references from individual authors and also agency reports. Data from the assessment are provided in six appendices. (ML)

[^0]
INSTITUTE OF MEDICINE

U.8. DEPARTMENT OF EDUCATION
office of Educational Research and improvement
EDUCATIONAL RESOURCES INFORMATION V
ATtis document has been reproduced as vocerved from the person or organization originating it

- Minor changes have been made to improve reproduction quality.
- Points of view or opinions stated in this docur Pant do not necessarily represent official Hent do not necessary.
"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

1985 REPORT

Personnel Needs and Training for Biomedical and Behavioral Research

Personnel Needs and Training for Biomedical and Behavioral Research

THE 1985 REPORT
of the

Committee on National Needs for Biomedical and Behavioral Research Personnel

Institute of Medicine
National Academy of Sciences

NATIONAL ACADEMY PRESS
Washington, D.C. 1985

NOTICE: The project that is the subject of the report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.

This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee consisting of members of the National Academy of Sciences, the National Acaciemy of Engineering, and the Institute of Medicine.

The Institute of Medicine was chartered in 1970 by the National Academy of Sciences to enlist distinguished merbers of the appropriate professions in the examination of policy matters pertaining to the health of the public. In this, the Institute acts under both the Academy's 1863 congressional charter responsibility to be an adviser to the federal government and its own initiative in identifying issues of medical care, research, and education.

The work on which this publication is based was performed pursuant to Contract No. NOl-OD-4-2l02 with the National Institutes of Health of the Department of Health and Human Services. Support for this project came from Evaluation Set-Aside funds (Section 513 of the PHS Act), Evaluation Project No. NIH 75-1.

Available from:

Committee on National Needs for Biomedical and Behavioral Research Personnel
Institute of Medicine
National Academy of Sciences
2101 Constitution Avenue, N.W., JH-640
Washington, D. C. 20418
(202) 334-3186

Puhlication No. IOM-85-06

PREFACE

This is the eighth report of the Committee on National Needs for Biomedical and Behavioral Research Personnel pursuant to the request contained in the National Research Service Awards Act of 1974 (P.L. 93-348 as amended). In that Act, Congress requested the National Academy of Sciences to conduct a continuing study of the nation's overall need for biomedical and behavioral research personnel, the subject areas in which such personnel are needed, and the kinds and extent of training that should be provided by the federal agencies authorized to provide National Research Service Awards--the National Institutes of Health (NIH), the Alcohol, urug Abuse, and Mental Health Adminiseration (ADHMHA), and the Division of Nursing, Health Resources and Services Administration (HRSA). The National Center for Health Services Research (NCHSR) was also authorized to provide National Research Service Awards in the Health Services Research Act of 1978 (P.L. 95-623).

A major part of this continuing study has been the development of a substantial body of data covering more than 20 years that provides much of the information needed for our assessment of the market for biomedical and behavioral research personnel. This data base-presented in the appendix--includes such items as enrollments, degrees, revenues, and expenditures in colleges, universities, medical and dental schools, and the labor force of Ph.D.s employed in the biomedical and behavioral fields. In this report we have added to this data base the latest available figures from the federal agencies and professional associations that collect them. Primarily these agencies are the National Institutes of Health, the National Science Foundation, the National Center for Education Statistics, the National Research Council, the Association of American Medical Colleges, the American Medical Association, the American Dental Association, the American Nurses Association, and the National League for Nursing.

In addition to our primary task of assessing national needs for biomedical and behavioral research personnel, this year we present the results of five special studies conducted under the auspices of this Committee. Two follow-up studies of former trainees have been conducted--the first one surveyed former participants in the Minority Access to Research Careers (MARC) Honors Undergraduate Training Program, and the second one collected data on former NIH/ADAMHA postdoctoral trainees and fellows. Both special studies, under the direction of Howard Garrison, were designed to find out what career paths the former trainees have chosen and what tiheir accomplishments have been. A summary of findings from the MARC study is presented in Chapter 3 and complete reports on both studies will be published separately.

A third special study deals with a detailed examination of dental education and the need for dental research personnel. The results are presented in Chapter 2.

The fourth special study deals with employment in the biotechnology industry. Robert Barker, Provost at Cornell University and a member of this Committee, collaborated with the American Society for Microbiology to conduct a survey of biotechnology firms designed to collect data about their current employment of scientists and hiring plans for the next 18 months. This survey, which repeats a previous one conducted in 1983, is summarized in Chapter 3.

Finally, Samuel Herman and Allen Singer have updated a study of the movement of basic biomedical scientists into clinical departments of medical schools that was reported upon in the committee's 1983 report. The revised and updated study will be published as a separate report under the auspices of this commitree.

On behalf of the Committee, I wish to express our appreciation to the many individuals and organizations that have contributed to the development of this report. I would like to thank in particular those individuals who participated in the committee's public meeting of May 10, 1984. A summary of that meeting is presented in Appendix F.

Robert L. Hill, Ph.D. Chairman

ACKNOWLEDGMENTS

Many individuals contributed information, data, and other valuable assistance on various aspects of this report. We wish to thank in particular the following individuals and their organizations for their contributions.

National Institutes of Health

Office of the Director: William Raub, Doris Merritt, Charles Sherman, who served as Project Officer, Helen Gee, George Bowden
Uivision of Research Grants: Nicholas Moriarity, Charles Shea, Doris Wallace, Joseph Brackett
National Institute of General Medical Sciences: Ruth Kirschstein, John Norvell, Elward Bynum
National Institute of Dental Research: Harald Loe, Preston Littleton, Jack Brown, Thomas Valega

Alcohol, Drug Abuse, and Mental Health Administration
Michele Applegate, Leonard Mitnick

Health Resources and Services Administration
Division of Nursing: Jo Eleanor Elliott, Doris Bloch, Adele Wood, Thomas Phillips, Gretchen Osgood

National Center for Health Services Research and Health Care Technology Assessment

John Marshall
American Dental Association
Mario Santangelo, David DeMarais
Association of American Dental Schools
Eric Solomon

American Association for Dental Research

John Gray
American Medical Association
Norbert Budde, Mary Lou White, Gene Roback
American Society for Microbiology
Michael Goldberg, Robert Watkins, Gerald Shockman

American Nurses' Association
 Pauline Brimmer, Catherine Foster, James Galliher
 National League for Nursing

Sally Solomon

Veterans Administration
Paulette Cournoyer
Rnbert Wood Johnson Foundation
Marcia Sass
Association for Health Services Research
Alice Hersh, Betsy Vieth
National Academy of Sciences/Institute of Medicine
The committee gratefully acknowledges the contributions to this report of Allen Singer, Staff Director and principal author, and the fine efforts of the other members of the committee's staff--Howard Garrison, Samuel Herman, Lori Thurgood, prudence Brown, Kay Harris, and Jorothy Cooper. IOM staff members Sunny Yoder and Cindy Howe were the principal contributors to Chapters 5 and 6.

The data processing staff of the Office of Scientific and Engineering Personnel, under the direction of George Boyce, provided excellent services to the committee. We thank programmers Rink van der Have, Maisie Compagnucci, and Beah Zander for their conscientious efforts.

Frederick Robbins, president of the Institute of Medicine, and Charles Miller, its Executive Officer, are also thanked for their oversight of the committee's activities.

COMMITTEE ON NATIONAL NEEDS FOR BIOMEDICAL AND BEHAVIORAL RESEARCH PERSONNEL

Chairman: ROBERT L. HILL, Ph.D.
Chairman, Department of Biochemistry
Duke University Medical Center

ROBERT BARKER, Ph.D.
Provost
Cornell University
ROBERT M. BOCK, Ph.D.
(Chairman, Basic Biomedical Sciences Panel)
Dean, Graduate School
University of Wisconsin-Madison
DAVID R. CHALLONER, M.D.
Vice President for Health Affairs
University of Florida
EMILIO Q. DADDARIO, LL.D.
Attorney-at-Law
Wilkes, Artis, Hedrick \& Lane
Washington, D.C.
CHARLES D. FLAGLE, Ph.D.
Professor and Head, Division of Operations Research
Dept. of Health Services Admin.
Johns Hopkins University
ROBERT H. FURMAN, M.D.
(Chairman, Clinical Sciences Panel)
Consultant
Eli Lilly \& Company
Indianapolis, IN
W. LEE HANSEN, Ph.D.

Professor of Economics
University of Wisconsin-Madison

ADA K. JACOX, Ph.D.
Director, Center for Research
School of Nursing
University of Maryland
LYLE V. JONES, Ph.D.
Director, The L. L. Thurstone
Psychometric Laboratory
Univ. of North Carolina-Chapel Hill
WILLIAM N. KELLEY, M.D.
Professor and Chairman
Department of Internal Medicine University of Michigan Medical School

CHARLOTTE V. KUH, Ph.D.
District Manager, Business Research
American Telephone \& Telegraph Company
Basking Ridge, NJ
BRENDAN A. MAHER, Ph.D.
(Chairman, Behavioral Sciences Panel)
Professor of Psychology
Harvard University
JERRY MINER, Ph.D.
Professor of Economics
Syracuse University
GERALD T. PERKOFF, M.D.
Curators Professor
School of Medicine
University of Missouri-Columbia

STAFF
ALLEN M. SINGER, Ph.D., Staff Director

HOWARD H. GARRISON, Ph.D.
Project Director for Special Studies and Executive Secretary for Behavioral Sciences Panel

SAMUEL S. HERMAN, D.D.S., Ph.D.
Executive Secretary
Clinical Sciences Panel and
Ad Hoc Panel on Dental Research

KAY C. HARRIS, B.S.
Administrative Officer
PRUDENCE W. BROWN, B.A.
LORI THURGOOD, B.A.
SUNNY YODER, B.A.
CINDY HOWE, B.A.
Research Associates

DOROTHY G. COOPER, B.S.
Secretary
vii

BASIC BIOMEDICAL SCIENCES PANEL

Chairman: ROBERT M. BOCK, Ph.D.
Dean, Graduate School
University of Wisconsin-Madison

DAVID H. COHEN, Ph.D.
Professor and Chairman
Dept. of Neurobiology \& Behavior
State Univ. of N.Y., Stony Brook
MAURICE S. FOX, Ph.D.
Professor of Molecular Biology
Department of Biology
Massachusetts Institute of Technology
ROBERT A. GOOD, M.D., Ph.D.
Member and Head
Cancer Research Program
Oklahoma Medical Research Foundation
FRANCIS J. HADDY, M.D., Ph.D.
Chairman, Department of Physiology
Uniformed Services University
of the Health Sciences
MARY ELLEN JONES, Ph.D.
Professor and Chair
Dept. of Biochemistry and Nutrition
University of North Carolina-Chapel Hill
LEE V. LEAK, Ph.D.
Research Professor
Dept. of Anatomy
Howard University
H. GEORGE MANDEL, Ph.D.

Professor and Chairman
Department of Pharmacology
George Washington University
PETER S. NOCE, M.D., Ph.D.
Laboratory Director
SmithKline Clinical Laboratories, Inc.
Woodland Hills, CA
FRANK G. STANDAERT, M.D.
Professor and Chairman
Department of Pharmacology
Georgetown University
PAUL S. SYPHERD, Ph.D.
Professor and Chairman
Department of Microbiology and
Molecular Genetics
Univ. of California-Irvine

BEHAVIORAL SCIENCES PANEL

Chairman: BRENDAN A. MAHER, Ph.D.
Professor, Department of Psychology and Social Relations
Harvard University
KENNETH E. CLARK, Ph.D.
President
Center for Creative Leadership
Greensboro, NC
LUCY M. COHEN, Ph.D.
Professor, Department of Anthropology
Catholic University of America
JACK ELINSON, Ph.D.
Professor and Acting Head
Division of Sociomedical Sciences
Columbia University
P. HERBERT LEIDERMAN, M.D.

Professor, Department of Psychiatry and Behavioral Sciences
Stanford Univ. Medical Center
GARDNER LINDZEY, Ph.D.
Director, Center for Advanced Study in the Behavioral Sciences
Stanford, CA
ELEANOR E. MACCOBY, Ph.D., D.Sc.
Professor, Department of Psychology
Stanford University
ROBERT McGINNIS, Ph.D.
Professor, Department of Sociology
Cornell University
JEROME E. SINGER, Ph.D.
Chairman, Medical Psychology
Uniformed Services University
of the Health Sciences
BONNIE J. SPRING, Ph.D.
Professor, Department of Psychology
Texas Tech University
ROBERT STRAUS, Ph.D.
Professor and Chairman
Department of Behavioral Science
University of Kentucky

CLINICAL SCIENCES PANEL

Chairman: ROBERT H. FURMAN, M.D.
Consultant
Eli Lilly \& Company
Indianapolis, IN
MORRIS A. LIPTON, M.D., Ph.D.
Director, Biological Sciences
Research Center
University of North Carolina-Chapel Hill
JOHN W. LITTLEFIELD, M.D.
Professor of Pediatrics
Children's Medical \& Surgical Center
The Johns Hopkins Hospital
JOHN F. SHERMAN, Ph.D.
Vice President
Association of American Medical Colleges
Washington, D.C.
SCOTT N. SWISHER, M.D.
Professor of Medicine
Department of Medicine
Michigan State University
BABETTE B. WEKSLER, M.D.
Professor of Medicine
Cornell University Medical College
JULES HIRSCH, M.D.
Professor and Senior Physician
Laboratory of Human Behavior and Metabolism
Rockefeller Unive rsity

DAVID PERRY, M.A.
(Consultant to the Panel)
Associate Dean for Planning \& Operations
St. Louis University Medical Center

AD HOC PANEL ON DENTAL RESEARCH

Chairman: PAUL GOLDHABER, D.D.S. Dean, Harvard School of Dental Medicine
D. WALTER COHEN, D.D.S.

Professor, Dept. of Periodontics
University of Pennsylvania
LLOYD C. ELAM, M.D., L.H.D., LL.D.
Professor, Department of Psychiatry
Meharry Medical College
WEBSTER JEE, Ph.D.
Professor of Anatomy
School of Medicine
University of Utah

ROBERT W. MANN, Sc.D.
Professor of Biomedical Engineering
Dept. of Mechanical Engineering Massachusetts Institute of Technology

JOHN J. SALLEY, D.D.S.
Vice President
Center for Innovative Technology
He rndon, VA
RAYMOND P. WHITE, D.D.S., Ph.D.
Professor, Department of
Oral and Maxillofacial Surgery
University of North Carolina-Chapel Hill

CONTENTS

1. INTRODUCTION AND SUMMARY 1
ABSTRACT I
COMMITTEE'S APPROACH TO ASSESSMENT OF NATIONAL NEED 3
RECENT RESEARCH DEVELOPMENTS 5
TRAINING AND RESEARCH FUNDING TRENDS 8
NATIONAL RESEARCH SERVICE AWARDS FOR 1983 AND 1984 9
FINDINGS AND RECOMMENDATIONS 11
Clinical Sciences 14
Minority Access to Research Careers (MARC) Honors Undergraduate Training Program 15
Basic Biomedical Sciences 15
Behavioral Sciences 16
Health Services Research 16
Nursing Research 16
2. CLINICAL SCIENCES 19
ABSTRACT 19
INTRODUCTION AND OVERVIEW 20
MEDICAL SCHOOL TRENDS 2.0
Medical School Enrollments 22
Clinical R and D Expenditures 23
Professional Service Income 24
Total Medical School Revenue 24
THE CHANGING FINANCIA L STRUCTURE OF MEDICAL EDUCATION 27
THE MARKET OUTLOOK 28
DEMAND FOR CLINICAL FACULTY IN MEDICAL SCHOOLS 30
Assumptions 31
Projections of Demand for Medical School Clinical Faculty to 1990 32
POSTDOCTORAL TRAINING NEEDS FOR MEDICAL SCHOOL
CLINICAL FACULTY 35
DENTAL SCHOOL TRENDS 38
Number of Dental Schools 38
Dental School Enrollments 38
Dental School Faculty 40
R and D Revenue 40
Dental Clinic Revenue 41
Tuition and Fees 41
State and Local Government Revenue 42
Total Revenue 42
DEMAND FOR CLINICAL FACULTY IN DENTAL SCHOOLS 43
POSTDOCTORAL TRAINING NEEDS FOR DENTAL SCHOOL CLINICAL FACULTY 46
SUMMARY 50
3. BASIC BIOMEDICAL SCIENCES 51
ABSTRACT 51
INTRODUCTION AND OVERVIEW 51
CURRENT SUPPLY/DEMAND INDICATORS 53
Ph.D. Production 55
Postdoctoral Appointments 55
Bachelor's Degrees 56
Enrollments 58
R and D Funding 59
Labor Force 59
SURVEY OF BIOTECHNOLOGY FIRMS 61
Shortages of Specialists 63
THE MARKET OUTLOOK 64
Projections of Academic Demand for Biomedical Ph.D.s 67
ESTIMATING PREDOCTORAL AND POSTDOCTOR1L SUPPORT LEVELS UNDER NRSA PROGRAMS 72
Postdoctoral Training Levels 72
Predoctoral Training Levels 73
SUMMARY 75
EVALUATION OF THE MARC HONOORS UNDERGRADUATE RESEARCH TRAINING PROGRAM 76
A FOLLOW-UP STUDY OF FORMER NIH POSTDOCTORAL TRAINEES AND FELLOWS 78
4. BEHA VIORAL SCIENCES 79
ABSTRACT 79
INTRODUCTION AND OVERVIEW 79
CURRENT SUPPLY/DEMAND INDICATORS 80
Enrollments 82
Psychology Enrollments 86
Other Behavioral Science Enrollments 86
Reliability of Behavioral Science Undergraduate Enrollment Estimates 87
Ph.D. Production 89
Postdoctoral Appointments 91
R and D Expenditures 92
Employment Sectors 92
The Behavioral Ph.D. Faculty/Student Ratio 94
Part-time Employment 94
Accuracy of Enrollment Estimates 96
Enrichment 96
Graduate Enrollment Trends 96
THE MARKET OUTLOOK 98
Projections of Academic Demand for Behavioral Ph.D.s 98
ESTIMATING PREDOCTORAL AND POSTDOCTORAL SUPPORT LEVELS UNDER NRSA PROGRAMS 100
Postdoctoral Training Levels 101
Predoctoral Training Levels 102
SUMMARY 103
5. HEALTH SERVICES RESEARCH 105
ABSTRACT 105
DEFINITION AND EXAMPLES OF CURREiNT HEALTH SERVICES RESEARCH 106
Health Maintenance Organizations and Health Care Costs 107
Health Status and Medical Care Utilization 108
SOURCES OF FUNDING FOR HEALTH SERVICES RESEARCH 109
Non-Government Sources 109
Government Sources 110
The National Center for Health Services Research and Health Care Technology Assessment 111
Health Care Financing Administration (HCFA) 113
National Institutes of Health 114
Other Federal Sources 116
THE MARKET OUTLOOK FOR HEALTH SERVICES RESEARCH PERSONNEL 117
Health Services Research Centers 118
Training for Health Services Research 120
6. NURSING RESEARCH 123
ABSTRACT 123
EXAMPLES OF NURSING RESEARCH 125
SOURCES OF SUPPORT F'OR NURSING RESEARCH AND TRAINING 126
Division of Nursing, HRSA 126
Nursing Research 126
Training for Nursing Research 128
National Institutes of Health 132
Veterans Administration 135
American Nurses' Foundation 135
Robert Wood Johnson Foundation 136
Sigma Theta Tau 137
NURSES WITH DOCTORAL DEGREES 137
Doctorate Degrees Awarded 137
Doctoral Programs in Nursing 138
Nurse Faculty with Doctorates 140
Employment of Nurses with Doctorates 140
SUMMARY 144
BIBLIOGRAPHY 147
APPENDIXES
A. Medical and Dental School Data 159
B. Biomedical Sciences Data 183
C. Behavioral Sciences Data 203
D. Misceilaneous Data 231
E. Biotechnology Survey Questionnaire and Summary of Responses 238
F. Summary of Public Meeting, May 10, 1984 240

TABLES

CHAPTER 1
TABLE 1.1 NRSA Training in Relation to Some National Health Expenditures, FY 1971-83(1972 S, billions)9
1.2 Aggregated Numbers of NIH/ADAMHA/HRSA Traineeship and Fellowship Awards for FY 1983 and FY 1984 10
1.3 NIH Traineeship and Fellowship Awards for FY 1983 and FY 1984 12
1.4 ADAMHA Traineeship and Fellowship Awards for FY 1983 and FY 1984 13
1.5 Committee Recommendations for NIH/ADAMHA/HRSA Full-Time Predoctoral and Postdoctoral Traineeship and Fellowship Awards for FY 1988-90 -17
1.6 Estimated Cost of Recommended NIH/ADAMHA/HRSA Training Programs for FY 1988-90 (millions of dollars) 18
Estimated Training Costs Per Award in FY 1984 (dollars) 18
CHAPTER 2
TABLE 2.1 Current Trends in Supply/Demand Indicators in the Clinical Sciences 21
2.2 Trends in U.S. Medical School Revenues (\$millions) 26
2.3 Trends in U.S. Dental School Revenues (\$ millions) 26
2.4 Projected Growth in Medical School Clinical Faculty, 1983-90, Based on Projections of Medical School Enrollment and Total Revenue per School 33
2.5 Estimated Number of Postdoctoral Research Trainees Needed to Meet Expected Demand for Clinical Faculty in Medical and Veterinary Schools Through 1990 Under Various Conditions 37
2.6 Projected Growth in Dental School Clinical Faculty, 1983-90, Based on Projections of Dental School Enrollment and Total Revenue in Dental Schools 47
2.7 Estimated Number of Dental Clinical Research Postdoctoral Trainces Needed to Meet Expected Demand for Dental Clinical Faculty Through 1990 Under Various Conditions 49
CHAPTER 3
TABLE 3.1 Current Trends in Supply/Demand Indicators for Biomedical Science Ph.D.s 54
3.2 Biomedical Ph.D.s Employed by Biotechnology Firms Responding to Survey 62
3.3 Inflows and Outflows from Academic Employment for Biomedical Science Ph.D.s, 1981-83 70
3.4 Projected Growth in Biomedical Science Ph.D. Faculty, 1983-90, Based on Projections of Enrollment, and R and D Expenditures 71
3.5 Estimated Number of Basic Biomedical Science Postdoctoral Trainees Needed to Meet Expected Academic Demand Through 1990 Under Various Conditions 74
3.6 Estimated Number of Basic Biomedical Science Predoctoral Trainees to be Supported Under NRSA Programs 75
CHAPTER 4
TABLE 4.1 Current Trends in Supply/Demand Indicators for Behavioral Science Ph.D.s 83
4.2 Current Trends in Supply/Demand Indicators for Clinical and Nonclinical Psychology Ph.D.s 84
4.3 Current Trends in Supply/Demand Indicators for Other Behavioral Science Ph.D.s (Sociology, Anthropology, Speech Pathology/Audiology) 85
4.4 Course Enrollments and B.A. Degrees in Science and Humanities Fields 88
4.5 Behavioral Scientists Employed in Colleges and Universities, 1961-83 97
4.6 Inflows and Outflows from Aca demic Employment for Behavioral Science Ph.D.s, 1981-83 99
4.7 Projected Growth in Behavioral Science Ph.D. Faculty, 1983-90 100
4.8 Estinated Number of Behavioral Science Postdoctoral Trainees Needed to Meet Expected Academic Denand Through 1990 Under Various Conditions 101
4.9 Estimated Number of Behavioral Science Predoctoral Trainees to be Supported Under NRSA Programs 103
CHAPTER 5
TABLE 5.1 Annual Research Appropriations for the National Center for Health ServicesResearch, FY 1976-86 (\$ millions)113
5.2 Research and Demonstrations Budget for the Health Care Financing Administration, FY 1979-86 (\$ millions) 115
5.3 NIH Obligations for Health Services Research and Developnient, FY $1977-85$ ($\$$ millions) 116
5.4 Federal Obligations for Health R and D, by Agency and Type of Research, FY 1985 ($\$$ thousands) 117
5.5 Characteristics of Health Services Research Centers, 1983 119
5.6 Field of Highest Degree Reported by NCHSR Principal Investigators, IFY 1978 121
5.7 Field of Highest Degree Reported by NCHSR Trainees, FY 1978 122
CHAPTER 6
TABLE 6.1 Nursing Research Grants Active at End of Fiscal Years 1969-83, by Content Category 127
6.2 Doctoral Degree Status of Principal Investigators on Active Research Grants from the Division of Nursing, FY 1974-83 128
6.3 Nursing Research Grants and Contracts Awarded, FY 1956-84 (\$ thousands) 129
6.4 NRSA Awards in Nursing, FY 1982-84 130
「 5 NRSA Applications Reviewed by Scientific Review Groups, by Status of Application, FY 1984 131
0.6 Disciplines of NRSA Applicants, by Status of Application, FY 1984 131
6.7 Activities of NIH Grants with Nursing Research Components, FY 1983 133
6.8 NIH-Funded Extramural Projects in Nursing Research or with Nursing Research Components, by Supporting Unit, FY 1983 133
6.9 NIH-Funded Extramural Projects in Nursing Research or with Nursing Research Components, by Focus of Award and Type of Investigator, FY 1983 134
6.10 V.A. Research Projects with Nurse Principal Investigators, by Position of Principal Investigator and Area of Research, FY 1984 136
6.11 Doctoral Programs in Nursing, 1983-84 139
6.12 Registered Nurses with Doctoral Degrees, by Major Area of Degree and Major Function, 1980 142
6.13 Registered Nurses with Doctoral Degrees, by Employment Setting and Major Function, 1980 143
6.14 Average Percent of Time Spent in Research by Work Setting and Percent of Nurses with Doctorates, 1980 144

FIGURES

CHAPTER 2
FIGURI: 2.1 Medical students, residents, and elinical fellows, 1961-83, with projections to 1990 23
2.2 Clinical R and D expenditures per sehool in U.S. medical schools, by control of institution, 1962-83, with projections to 1990 (1972 S, millions) 25
2.3 Professional service income per school reported by U.S. medical schools, by control of institution, 1962-83, with projections to 1990 (1972 S, millions) 25
2.4 Total revenue per medical school, by control of institution, 1964-83, with projections to 1990 (1972 S, millions) 27
2.5 Clinical faculty/student ratio (CF/WS) vs. total revenue per medical school (T/S) 32
2.6 Clinical faculty in U.S. medical schools, by control of institution, 1961-83, with projections to 1990 34
2.7 Number of operational U.S. dental schools, by control of institution, 1961-84 39
2.8 Enrollments in U.S. dental schools, by control of institution, 1968-84, with projections to 1990 39
2.9 Total revenue per school in U.S. dental schools, by control of institution, 1968-83, with projections to 1990 43
2.10 Dental school elinical faculty/student ratio (CF/WS) vs. total revenue per dental school (T/S) 44
2.11 Full-time faculty in clinical departments of dental schools, by control of institution, 1969-84, with projections to 1990 45
CHAPTER 3
FIGURE 3.1 Ph.D. production, postdoctoral appointments, and first-year graduate enrollmentsin doctorate-granting institutions in basic biomedical science fields, 1960-8356
3.2 Bachelor's degrees awarded in biomedical science fields compared to other fields, 1962-82 57
3.3 Total biomedical science undergraduate and graduate enrollments in colleges and universities, by control of institution, 1960-81, with projections to 1990 58
3.4 Biomedical science R and D expenditures in colleges and universities, by control of institution, 1964-83, with projections to 1990 (1972 S, millions) 60
3.5 Percentage distribution of the year of firms' initiation of operations in the biotechnology in dustry 61
3.6a Biomedical science Ph . D. faculty (F) vs. biomedical undereraduate enrollments (U), 1960-81 66
3.6b Biomedical science Ph.D. faculty (${ }^{\circ}$) vs. bionedical graduate enrollments (G), 1960-83 66
3.7 Biome dical Ph.D. faculty/student ratio (F/WS) vs. biomedical R and D expenditures in colleges and universities (M) 67
3.8 Ph.D.s employed in the biomedical sciences at colleges and universities, by control of institution, 1960-83, with projections to 1990 69
CHAPTER 4
FIGURE 4.1 Behavioral science undergraduate and graduate enrollments in colleges anduniversities, 1964-8182
4.2 Ph.D. degrees awarded in behavioral science fields, 1961-83 90
4.3 Postdoctoral appointments in behavioral science fields, 1962-83 91
4.4 Behavioral science R and D expenditures in colleges and universities, 1964-83 93
4.5 Behavioral science Ph.D. faculty/student ratio, 1964-81 95
4.6 Behavioral science Ph.D.s employed in colleges and universities, 1962-83 98

CHAPTER 6

FIGURE 6.1 Funding for nursing research grants and contracts, 1960-83 (1972 S, millions) 130
$\begin{array}{lll}\text { 6.2 Research doctorates awarded to nurses, 1965-82 (academic years) } & 138\end{array}$
6.3 Research doctoral programs administered by schools or departments of nursing,
1963-84 (academic years)
6.4 Nurses enrolled in research doctoral programs, 1965-83 (academic years) 140
6.5 Percentage of full-time nurse faculty who hold research doctorate degrees,
$1964-82$ (academic years)
xviii

1. Introduction and Summary

Abstract

Research training programs sponsored by the federal government serve several functions: they attract able students to research careers by providing stipends, tuition, and allowances; they encourage better training environments at colleges and universities through institutional allowances that support faculty, equipment, and interdisciplinary programs; and they contribute to the nation's research enterprise by promoting the flow of well-trained young scientists into research careers. These are worthy goals, and the training programs, filtered through the peer review process, appear to have been successful in achieving them. Assessing the appropriate level of training to be provided under the National Research Service Award (NRSA) programs--the task of this study--involves consideration of these objectives together with the career and employment prospects of the trainees.

Currently we are facing a period in which faculty expansion will likely be curtailed by falling enrollments and slower revenue growth, but increased replacement demand is expected to be generated by higher rates of attrition due to death and retirement. Industrial demand for bioscientists is increasing and biotechnology firms expect academia to train the personnel they need to sustain this growth. The main issue is how to achieve the proper balance between maintaining the strength of the nation's biomedical and behavioral research effort, and adjusting the flow of young scientists entering the field to the number of research and teaching positions that are expected to become available in the next few years.

During the l970s, training funds declined sharply relative to research funds and currently amount to less than 6 percent of research expenditures of the administering agencies--NIH, ADAMHA, and Division of Nursing, HRSA--down from 17 percent in 1971. It is the committee's view that training funds should not be further reduced. The nation must begin to plan for the 1990 decade when many current faculty members will reach retirement age and college enrollments will once again start to increase.

The issues addressed in this report are those presented to the National Academy of Sciences (NAS) by Congress in the 1974 Act that reauthorized the research training programs of the National Institutes of Health (NIH), the Alcohol, Drug Abuse, and Mental Health Administration (ADAMHA), and by subsequent amendment, the Division of Nursing of the Health Resources and Services Administration (HRSA). Congress asked the NAS to monitor the biomedical and behavioral fields, to assess the national need for research personnel in these fields, and to determine the kinds and extent of training that the government should provide.

This report examines the system under which biomedical and behavioral scientists are trained for research careers in this country and the government's programs that support such training. Those programs consist of training grants and fellowships that are designed to supplement the government's research programs in the biomedical and behavioral fields by providing support to predoctoral and postdoctoral students and their institutions. The goal of the training programs is generally to strengthen the research effort, and they do so by encouraging young scientists to pursue research careers, by selecting the best qualified candidates for support, and by fostering the development of a strong training environment through competition and the peer review process.

From the very inception of these programs in 1937, the interdependence of research and training was recognized. The National Cancer Act of 1937 established the National Cancer Institute within the National Institutes of Health and gave it authority for supporting both research and training in matters relating to the causes and treatment of cancer. The wisdom of that linkage within our universities was acknowledged recently by Donald Kennedy, president of Stanford University, who noted that the government could have followed the Geiman model and established quasi-independent laboratories with support from the industrial sector, or it could have created a network of government laboratories.

That it did neither guaranteed that new discovery and the training of the next generation of discoverers would take place in the same locations, thus establishing one of the great strengths of American science. That strength is well recognized in Europe; at the 1977 Nobel awards, when Americans swept the prizes for the first time, our thoughtful Swedish colleague Sune Bergstrom pondered the phenomenon and finally attributed it to the 'democracy of American science.' He meant the fellowship of the bench--the system of apprenticeship that is built upon the coexistence of research with research training.
(Kennedy, 1985)

COMMITTEE'S APPROACH TO ASSESSMENT OF NATIONAL NEED

In response to its congressional charge, this committee and its predecessors have compiled a substantial data base on national trends in enrollments, degrees, employment characteristics and funding in the biomedical and behavioral fields, developed analytic models of the training system, and made projections of demand for these scientists over the short term. By means of follow-up studies, we have also examined the subsequent career achievements of former trainees and fellows. Comments and suggestions from the scientific community have been solicited at public meetings following the publication of each report. A summary of the last public meeting in May 1984 is presented in Appendix F.

In this report, we present the latest available data on the components of the system and update the projections to 1990. The complete data base is published in Appendixes A through C. A chapter is devoted to each major area of this study, which we have defined as clinical sciences, basic biomedical sciences, behavioral sciences, health services research, and nursing research. Our definition of each area is presented in Appendix D. The taxonomy is based on the fields that contribute to each area, not on the types of degrees held by the contributors. Chapter 3 includes the results of the second survey of personnel needs in the biotechnology industry.

The committee's basic approach has been to examine the systems that have evolved in this country for preparing the students for careers in biomedical and behavioral research and by which they received support for their research as independent investigators and teachers. These systems function somewhat differently in each of the major areas of concern. In the basic biomedical sciences, the typical route to a research career consists of about 7 years of graduate study leading to the Ph.D. degree, followed by 3 years of postdoctoral training. The behavioral fields, nursing research, and health services research are somewhat similar to the biomedical fields, except that postdoctoral training is less typical. In the clinical sciences, research-oriented physicians usually complete 4 years of medical school, 3 years of residency training, and 2 or more years of research training before they begin to compete for research support. postdoctoral research training is often sought by dentists and veterinarians who intend to pursue research careers.

The committee believes that a solid understanding of how the systems have functioned in the past and how they can be expected to function in the next few years is essential to an assessment of training needs. There are some components of the training system that are vital to our assessment. Among these are the length of the postdoctoral training period, :he percentage of newly hired faculty members who have some postdoctoral research training, the percentage of postdoctoral trainees who subsequently choose academic careers, and the proportions of predoctoral students and postdoctoral trainees that should be supported under NRSA programs. Each of these components is considered along with our projections of faculty demand within the relevant chapter--clinical sciences, basic biomedical sciences, or behavioral sciences. Identifying and quantifying these critical
components of the system provides a rational basis for determining the appropriate numbers of federally-supported traineeships and fellowships in these fields.

One aspect of this study is quite clear--the universities and health professional schools are the locus of most biomedical and behavioral research and training spon: sred by the government. The effcetiveness of those programs therefore depends heavily on the availability of trained and qualified researchers among the faculty members of these institutions. Faculty members are supported by funds generated by tuition, research grants and contracts, state and local government contributions, and increasingly in medical schools by revenue from faculty practice plans. The latter has taken on an especially important role over the past 10 years as the medical schools strive to maintain revenues in the face of rising indirect costs and slower growth in enrollments, research funds, and other sources of revenue. Income from medical service plans displaced federal research grants and contracts as the largest source of funds for medical schools in the late 1970 s and now accounts for over 30 percent of total revenue (AMA, 1960-84).

From the point of view of clinical research, the growth of income from medical service activities is a disturbing trend because it means that the emphasis in clinical departments of medical schools has shifted away from research toward service activities. As faculty vacancies occur, they tend to be filled by physicians whose interests are primarily in providing patient care in an academic setting rather than in research. Some basic scientists with Ph. D. degrees have moved into clinical departments to support the research and teaching activities as physicians in those departments turn more to service programs. But the pressure on medical school faculties to generate income means that young physicians may be required to perform service at the expense of research.

Partially to counterbalance this growing tendency for medical schools to concentrate on service rather than research activities, this committee has recommended in the past and continues to recommend that more research training opportunities be made available to aspiring clinical investigators. The training system should be adjusted so that a higher percentage of recruits to clinical faculties will have some research training experience. A postdoctoral appointment as a trainee or fellow is the typical mode of acquiring such experience for physicians, veterinarians, and dentists. Furthermore, the knowledge base in the biomedical sciences has expanded rapidly in recent years and this has imposed additional requirements on training. A postdoctoral appointment of about 3 years duration is now generally required because the complexity of biomedical science has increased and the array of instrumentation that must be mastered has developed rapidly. Also the boundaries between fields are disappearing (new fields such as immunogenetics and neurovirology are emerging) and it is mainly during the postdoctoral period that many bioscientists begin the process of integrating related fields with their own.

The training programs are designed to complement research programs by developing the training environment and maintaining an adequate supply of well-trained scientists. The level and distribution of training funds provided by NRSA programs should be determined so as to
achieve a stable and efficient system. Sharp year-to-year variations in training levels are unnecessarily disruptive. Demand expected to be generated in the academic and other sectors must be compared with the anticipated supply. Demography, funding trends, and alternative sources of support for training are all considered in our projections and analyses.

A diversified array of disciplines contributes to the biomedical and behavioral sciences, ranging from mathematics and engineering to the clinical sciences. This diversity should be encouraged--excellent research often is produced in non-traditional areas--and the peer review system should be relied upon to select the best applications. Underlying all of these considerations is the perception that the effectiveness of the government's biomedical and behavioral research programs depends on the continual infusion of young scientists trained in the latest techniques of a science making startlingly rapid advances.

RECENT RESEARCH DEVELOPMENTS

Biological science has undergone a remarkable transformation in the past 3 or 4 decades. It has changed from a descriptive to an analytical and mechanistic field with a capacity to probe ever finer levels of organization. The growth in understanding of living things has been sufficiently dramatic and pervasive to justify use of the term "revolution" to describe the evolving state of modern biological science.

Molecular biology began as a discipline that combined the theories and methods of biochemistry, microbiology, and microbial genetics. The more recent advent of the recombinant DNA technology permitted direct study of the genes of higher organisms, including man. It became possible to observe their structure, to determine how they function as blueprints for fashioning the cellular machinery, and to decipher the controls on their operation. As described by Baltimore (1984), this startling technology could be used ". . . as a molecular microscope with which to peer into the details of genes and as a factory able to synthesize the product encoded by the genes."

The past decade witnessed other revolutionary advances in science and technology. One of the most interesting developments, for example, has been the detection and isolation of oncogenes, dominant genetic elements that apparently exist in the chromosomes of every human cell and in the cells of numerous other organisms. Oncogenes appear to play a central role in the malignant transformation of normal cells. Approximately 15-20 percent of all human tumors have been shown to contain oncogenes in their DNA. Increased understanding of oncogenes and how oncogene-encoded proteins work may make it possible to antagonize their functioning and to reverse the process of carcinogenesis.

Enriched by new tools and understanding of biochemistry, molecular genetics, and cell biology, immunobiology has become a fertile source of insights. Because of the chemical specificity of immunologic reactants and their products, researchers and clinicians have been provided with powerful and versatile techniques, such as radioimmuno.
assays. In addition, hybridoma-derived monoclonal antibodies promise to revolutionize many aspects of biology and medicine through their ability to identify almost any molecular structure that can be purified sufficiently to be used as an antigen.

Fundamental knowledge in the neurosciences has expanded along a broad front from cellular and molecular aspects to mechanisms of perception, learning, and emotion. The ingenious application of new technologies has hastened analysis of structural organization of the nervous system, and a detailed topography of the functional anatomy of the brain is close at hand. The chemical mechanisms by which some cells communicate, as well as the modes of action of many neurotransmitter substances, are now understood in considerable detail. From that knowledge will emerge therapies for disorders associated with atnormalities in specific neuro-transmitter systems.

Research on the relationship between stress and other physical problems has produced some significant results. Studies of hypertension have shown that psychosocial factors are highly correlated with hypertensive episodes; psychosocial factors may also be important in the earlier stages of the disease and may play a role in the etiology of high blood pressure (Kaplan, 1980). Along with genetic factors, behavioral factors such as dietary salt intake, obesity, and psychological stress have been linked to the initiation of high blood pressure. Experimental studies involving animals have found that the brain participates at some stage in the increase of blood pressure levels. A series of experiments with rats demonstrated that conflict in learning situations was related to the development of the hypertensive state (Friedman and Dahl, 1975; Friedman and Iwai, 1976).

Studies in a new interdisciplinary research area, psychoneuroimmunology, have found that stress-responsive hormones can alter the components of the imuune response (Ader, 1981). The psychosocial influences on immune function have important implications for the body's defenses against malignancy. Other studies, involving laboratory animals (Amkraut and Solomon, 1977), and human subjects (Kasl et al., 1979), have found that psychosocial factors are related to susceptibility to infectious diseases.

The biological revolution has been fueled in part by the merging of innovative instrumentation, such as lasers, large-scale integrated circuits, and computers, with fundamental insights into the nature of the living cell. Biomedical applications of lasers include laser cytofluorometry, a technique for separating cells according to size, shape, and reflective properties, and their further sorting according to, for example, their shape and DNA content-all within minutes.

A further illustration of evolving instrumentation technology is positron emission tomography (PET). This provides a non-invasive means for visualizing the metabolism of the human brain during normal activities, such as hearing, speaking, or thinking, and in diseased states in which there are deficits in sensory, motor, or cognitive processes.

Still another technology which opens up new approaches to basic biomedical problems is electron spin spectroscopy. This is a particularly sensitive tool which can be used to measure phenomena
such as oxygen uptake in tissue and electron transport activities involved in intracellular energy processes. Recent refinements permit. spectroscopic measurements on single muscle fibers or small numbers of cells without sacrificing resolution or sensitivity.

This rich harvest of knowledge and new technologies has made it possible to ask more sophisticated and penetrating questions. Investigators can now move with assurance in experiments that only 10 years ago would have been considered to lie almost in the realm of science fiction. In this context, the President's Biomedical Research Panel observed in its 1976 report: "There do not appear to be any impenetrable, incomprehensible diseases . . . the questions are at last here, and explorations in search of the answers are under way." The following examples attest to the soundness of that observation.

- Researchers have developed increasingly detailed "maps" of human chromosomes, which identify the individual sites of the genes responsible for particular genetic defects. Gene mapping has now identified the chromosomal sites for more than 35 such genes responsible for specific genetic disorders, such as sickle cell disease. Several years ago, for example, the site of the defective gene responsible for a common form of muscular dystrophy was pinpointed, thereby setting the stage for efforts to isolate it and to determine the nature of the molecular defect that causes this degenerative disease. Also, a genetic marker closely linked with the gene that causes Huntington's disease has been located on the short arm of human chromosome 4. This landmark discovery is a critical first step toward developing a test for presymptomatic detection of carriers of this fatal, late-onset disorder, and ultimately reducing its incidence.
- Progress has been made toward treatment of some of the genetic diseases. Investigations currently underway with respect to the Lesch-Nyhan syndrome presage developments in other areas. Specifically, scientists have recently cloned the gene for HGPRT--the enzyme missing in Lesch-Nyhan--and have injected it into cultures of cells derived from Lesch-Nyhan patients, where the cloned gene corrected the deficient function. Lesch-Nyhan syndrome, which causes severe psychomotor retardation and early death in one of every 50,000 male births, may therefore be the first candidate for gene therapy in humans, with other similar genetic metabolic diseases to follow.
- As in the case of molecular genetics, the last decade has witnessed a remarkable leap in understanding what receptors do and how they work. Receptor research has
resulted in rapid and sensitive methods of following drug responses of healthy and diseased cells. Tests based on estrogen receptor determinations provide guides in the selection of alternative treatments for human breast cancers. Receptor studies have already contributed to the development of drugs with psychopharmacologic importance, and of propranolol for the treatment of hypertension. Moreover, the potential exists for a new generation of drugs of natural or synthetic origin that are much more specific in their actions and whose pharmacology will be understood at a molecular level.
- Concentrated effort on vaccine development is yielding positive results. Scientists have been able to combine vaccinia virus, previously used to immunize against smallpox, with genetic material from hepatitis B virus. This hybrid vaccinia virus has been show. 1 to stimulate in rabbits the production of significant amounts of antibody to hepatitis B antigen. The technique has subsequently been used to combine vaccinia virus with genetic material from influen virus, from rabies virus, and from genital herpes virus. The prospect of a single recombinant vacci. to protect individuals against many diseases represents an entirely new approach to mass immunization that may have enormous worldwide implications.

These examples are only a sample from a broad array of advances in biological sciences. But they indicate that the nation's past investment in biomedical and behavioral research and training has produced a powerful system for the development of these sciences. To maintain the momentum, talented students in universities and professional schools must be attracted to research careers by the provision of continual opportunities for training with established scientists, and adequate research funds must be made available to young investigators at the early stages of their career development.

TRAINING AND RESEARCH FUNDING TRENDS

Expenditures for the NRSA training programs totaled about $\$ 190$ million in l983, or less than 6 percent of the research expenditures of these administering agencies-NIH, ADAMHA, and Division of Nursing, HRSA (Table l.l). With the exception of 1973 when funds were impounded, training budgets have fluctuated in a fairly narrow range since 1971 compared with other health expenditures. Consequently, after adjustment for inflation, training funds have declined by almost 6 percent per year since 1971. By contrast, national research expenditures have increased over this period by 3 percent per year, and national health care expenditures by more than 5 percent per year in real terms.

TABLE 1.1 :iRSA Training in Relation to Some National Health Expenditures, FY 1971-83 (1972 \$, billions) ${ }^{a}$

Fiscal Year	National Health Care Expenditures (1972 \$)	NIH/ADAMHA/HRSA Expenditures			Research Training Relative to:		
		$\begin{gathered} \text { National } \\ \text { Health R\&D } \\ (1972 \$) \\ \hline \end{gathered}$	R\&D Grants ar:d Contracts (1972 \$)	Research Training (1972\$)	Nat'I. Health Care Expend. (\%)	```Nat'l. Health R&D (%)```	R\&D Grants \& Contracts (\%)
1971	87	3.3	1.0	0.18	0.25	5.3	17.0
1972	94	3.5	1.2	0.18	0.19	5.1	15.0
1973	97	3.5	1.1	0.12	0.13	3.5	10.8
1974	100	3.8	1.4	0.18	0.18	4.8	13.1
1975	104	3.7	1.3	0.14	0.14	3.8	10.6
1976	112	3.8	1.4	0.11	0.09	2.7	7.4
1977	119	4.0	1.4	0.10	0.09	2.7	7.5
1978	124	4.1	1.4	0.11	0.08	2.5	7.3
1979	130	4.3	1.6	0.10	0.08	2.4	6.5
1980	140	4.4	1.6	0.11	0.08	2.5	7.1
1981	147	4.4	1.5	0.10	0.07	2.4	6.9
1982	156	4.5	1.5	0.08	0.65	1.8	5.7
1983	165	4.7	1.5	0.09	0.05	1.9	5.8
Annual Growth							
$\begin{aligned} & \text { Rates } \\ & \text { 1971-83 } \end{aligned}$	5.5\%	3.0\%	3.3\%	-5.7\%	-10.9\%	-8.2\%	-8.6\%

\boldsymbol{a}_{1972} dollars were obtained by using the U.S. Bureau of the Census Implicit GNP Price Defiator. See Appendix Table B7 for deflator.

SUURCE: NIH (1966-84). See also Appendlx Table D3.

NATIONAL RESEARCH SER VICE AWARDS FOR 1983 AND 1984

In 1983, the three agencies that administer NRSA programs-the NIH, ADAMHA, and Division of Nursing, HRSA-awarded ll,579 full-time training positions under these programs (Table l.2). This was slightly lower than the 1982 level of 11,632 , and also less thar the 12,825 * at had been recommended previously by this committee (NRC, 1975-81, 1981 report, p. 20).

The 1983 awards "ere about equally divided between predoctoral and postdoct- il awards. A small number of undergraduate awards were made--ainost all of hem for the Minority Access to Research Careers (MARC) Honors prograa. An additional l,5l8 awards were made in the Short-Term Training Program, primarily to health professional students. Training grant positions far outnumbered fellowships, accounting for over 83 percent of all awards.

TABLE 1.2 Aggregated Numbers of NIH/ADAMHA/HRSA Traineeship and Fellowship Awards for FY 1983 and FY 1984^{a}

		$\begin{aligned} & \text { TOTAL } \\ & \text { ALL } \\ & \text { FIELDS } \end{aligned}$	Biomedical Sciences	Behavioral Sciences	Clinical Sciences	Nursing Research
FY 1983	TOTAL	11,579	6,929	861	3,665	124
	Predoctoral	5,207	3,425	408	1,267	107
	Postdoctoral	5,915	3,139	373	2,398	5
	MARC Undergraduate ${ }^{\boldsymbol{b}}$	457	365	80	0	12
	Trainees	9,711	5,455	758	3,486	12
	Predoctoral	5,010	3,363	381	1,266	0
	Postdoctoral	4,244	1,727	297	2,220	0
	MARC Undergraduate ${ }^{\text {b }}$	457	365	80	0	12
	Fellows	1,868	1,474	103	179	112
	Predoctoral	197	62	27	1	107
	Postdoctoral	1,671	1,412	76	178	5
	MARC Undergraduate ${ }^{\boldsymbol{b}}$	0	0	0	0	0
FY 1984	TOTAL	11,469	6,992	859	3,498	120
	Predoctoral	5,096	3,423	391	1,167	115
	Postdoctoral	5,912	3,194	382	2,331	5
	MARC Undergraduate ${ }^{\boldsymbol{b}}$	461	375	86	0	0
	Trainees	9,578	5,508	753	3,314	3
	Predoctoral	4,863	3,339	364	1,158	2
	Postdoctoral	4,254	1,794	303	2,156	1
	MARC Undergraduate ${ }^{\text {b }}$	461	375	86	0	0
	Fellows	1,891	1,484	106	184	117
	Predoctoral	233	84	27	9	113
	Postdoctoral	1,658	1,400	79	175	4
	MARC Undergraduate ${ }^{\text {b }}$	0	0	0	0	0

a These are total numbers of awards for traineeships and fellowships. Data on the number of new starts for FY 1983 and FY 1984 are not.available. Totals represent full-time positions only and do not include short-term traineeship and fellowship awards. In FY 1983 there were 1,518 short-term traineeships, of which 12 were prebaccalaureate, 1,394 were predoctoral, and 112 were postdoctoral. There were also 6 short-term fellowships, of which 3 were predoctoral and 3 were postdoctoral. In FY 1984 there were 1,586 short-term trainesships, of which 12 were prebaccalaureate, 1,489 were predoctoral, and 85 were postdoctoral. There were also 4 short-term fellowships, of which 3 were predoctoral and 1 was postdoctoral. See Tables 1.3 and 1.4 for further detail.
${ }^{b}$ These are prebaccalaureate awards in the Minority Access to Research Careers (MARC) Honors Undergraduate Training Program. See Tables 1.3 and 1.4.

SOURCES: Office of the Administrator, ADAMHA (6/15/84 and 6/10/85); Division of Nursing, HRS \hat{A} (12/14/84); Division of Research Grants, NIH (4/23/85 and 7/29/85).

In $F Y$ 1984, the number of full-time NRSA training positions totaled ll,469. This was down slightly from FY 1983, almost all of the drop coming in predostoral awards. MARC Undergraduate awards were practically unchanged from FY 1983, and awards in the short-term training program rose somewhat to 1,586 .

For both FY 1983 and FY 1984, most of the training positions were allocated to the basic biomedical and clinical sciences, followed by behavioral sciences and nursing research. No awards were made by these agencies in the area of health services research. The actual and recommended distribution of awards by field is shown in the following table:

FY 1983		FY 1984	
Actual Recommended		Actual	Recommended
59.8%	58.1 \%	60.9%	57.98
7.4%	9.5\%	7.5\%	9.8\%
31.7%	27.5%	30.5%	27.4%
1.1%	2.38	1.18	2.3\%
0.08	2.68	0.08	2.6%
100.08	100.0\%	100.0\%	100.0\%

The 1983 and 1984 training awards by field, academic level, and mechanism are shown in Table 1.3 for NIH and in Table 1.4 for ADAMHA. Note that these tables show only full-time training pritions and therefore are not directly comparable to data in previous committee reports which include trainees in the short-term program.

FINDINGS AND RECOMMENDATIONS

Previous reports have made recommendations for training levels through 1987. Our recommendations in this report are directed to fiscal years 1988-90. The analyses leading to these recommendat:ions in each major area can be found in subsequent chapters of this report.

In general, we find that the NRSA training grants and fellowships are integral parts of the overall biomedical and behavioral research programs in this country and play key roles in maintaining the vitality of those programs.

Among this committee's chief concerns expressed in its past reports have been the number of biomedical scientists serving in postdoctoral appointments for prolonged periods and the reduced number of academic positions that would likely result from declining entollments in the 1980s. Those concerns were reflected in recommendations for a reduction in the number of predoctoral traineeships that should be provided under NRSA programs, and a stabilization of postdoctoral training levels through 1987. But the most recent data available to us indicate that the postdoctoral pool of biomedical scientists is beginning to decline, as is bioscience Ph.D. production. During the next 5 years, a large number of faculty

TABLE 1.3 NIH Traineeship and Fellowship Awards for FY 1983 and FY 1984^{a}

- These are total numbers of awards for traineeships and fellowships. Data on the number of new starts for FY 1983 and FY 1984 are not available. Awards from the Fogarty International Center are excluded. Totals represent full-time positions and do not include shor-term traineeship awards. In FY 1983 there were 1,472 short-erm trainesslip awards, most of them in the shoriterm training program for health professional students (1,334 predoctoral and 83 postdoctoral, totaling 1,417 awards). There were also 55 predoctoral short-term traineshlps in other programs (35 in basie biomedical sciences, 18 in clinical sciences, and 2 in behavioral sciences). In FY 1984 there were 1,564 shortterm traineeship awards, 1,459 of them in the program for health professional students (1,379 predoctoral and 80 postdoctoral). There were also 105 pretioctoral shortiterm traimesthips in other programs (67 in basic biomedical sciences, 34 in clinical sciences, and 4 in behavioral sciences).
${ }^{6}$ Most of the awards In nursing research are from the Division of Nursing, HRSA. Figures for FY 1983 also include 12 traineeship awards from the NIH in the Minority Access to Research Careers (MARC) Honors Undergraduate Training Program.
- These are prebaccalaureate awards in the Minority Access to Research Careers (MARC) Honors Undergraduate Research Training Program.

SOURCES: Division of Nursing, HRSA (12/14/84); Division of Research Grants, NIH (4/23/85 and 7/29/85).

TABLE 1.4 ADAMHA Traineeship ary citlowship Awards for FY 1983 and FY 1984^{a}

		TOTAL ALL FIELDS	Biomedical Sciences			Behavioral Sciences	Clinical Sciences ${ }^{b}$	
		Total Biomedical Sciences	Biological Sciences	Epidemiology and Blostatistics				
FY. 1983	TOTAL		1,106	388	276	112	576	142
	Predoctoral	474	181	114	67	253	40	
	Postdoctoral	547	202	157	45	243	102	
	MARC Undergrad.c	85	5	5	0	80	0	
	Trainees	957	317	212	105	516	124	
	Predoctoral	417	152	89	63	226	39	
	Postdoctoral	455	160	118	42	210	85	
	MARC Undergrad.c	85	5	5	0	80	0	
	Fellows	149	71	64	7	60	18	
	Predoctoral	57	29	25	4	27	1	
	Postdoctoral	92	42	39	3	33	17	
	MARC Undergrad.c	0	0	0	0	0	0	
FY 1984	TOTAL	1,105	396	246	100	541	168	
	Predoctoral	470	194	133	61	217	59	
	Postdoctoral	540	193	154	39	238	109	
	MARC Undergrad.e	95	9	9	0	86	0	
	Trainees	938	315	221	94	482	141	
	Predoctoral	402	162	105	57	190	50	
	Postdoctoral	441	144	107	37	206	91	
	MARC Undergrad. ${ }^{\text {e }}$	95	9	9	0	86	0	
	Fellows	167	81	75	6	59	27	
	Predoctoral	68	32	28	4	27	9	
	Postdoctoral	99	49	47	2	32	18	
	MARC Undergrad.e	0	0	0	0	0	0	

- These are total numbers of awards for traineeships and fellowships. Data on the number of new starts for FY 1983 and FY 1984 are not available. Totals represent full-time positions only and do not Include short-term traineeship and fellowship awards. In FY 1983 there were 46 short-term tralneeshipa, of which 12 were prebaccalaureate in behavioral sciences, 5 were predoctoral in biological sciences, and 29 were postdoctoral (5 in biological sciences, 24 in behavioral sciences). There were also 6 short-term fellowships, of which 3 were predoctoral (2 in blotogical sciences and 1 in behavioral sciences), and 3 were postdoctoral (1 each in biological sciences, epidemiology/blostatistics, and behavioral sciences). In FY 1984 there were 22 short-term traineeshlpa, of which $\mathbf{1 2}$ were prebaccalaureate in behavioral sciences, $\mathbf{5}$ were predoctoral in biological sciences, and 5 were postdoctoral in biotogical sciences. There were also 4 short-term fellowships, of which 3 were predoctoral (2 in biological sclences and 1 in behavioral sciences), and 1 was postdoctoral in behavioral sciences.
- Effective FY 1981, ADAMHA has been using a different system for classifying their trainees and fellows. In prior years, ADAMHA reported training in beatth services research but none in cilinical sciences.
${ }^{\text {c }}$ These are prebaccalaureate awards in the Minority Access to Research Careers (MARC) Hewors Undergraduate Research Training Program.

SOURCE: Office of the Administrator, ADAMHA ($6 / 15 / 84$ and $6 / 10 / 85$).
members will reach retirement age and consequently the need for young faculty to replace them will begin to increase. In addition, NRSA research training funds have declined since 1974 , both in real terms and as a percentage of research expenditures, to a level below that previously recommended by this committee. As a consequence, the number of predoctoral trainees in the basic biomedical sciences supported in 1984 was 11 percent below the committee's recommended level and is on a steep downward slope. We therefore believe that the research training programs should be restored to the recommended number of positions by 1987, and then adjusted to meet the increase in demand expected to begin in the late l980s.

As shown in chapters 2-4, we have made projections of faculty demand under high, best-guess, and low assumptions. The range between the high and low projections in most cases is fairly wide, mainly because of the difficulties inherent in predicting future levels of academic revenues from R and D and other sources. Although we have based our recommendations on our best-guess estimates of expected demand, it must be recognized that these estimates could be thrown off by a number of factors including sudden changes in the hiring practices of universities and professional schools, shifts in federal funding patterns for biomedical research, and more radical revisions to Medicare/Medicaid and other health insurance programs.

Our recommendations, based on our best estimates of the market situation expected to prevail in the next five years and considerations of how the training system should operate in each area, are presented below.

Clinical Sciences

1. The number of full-time NRSA postdoctoral traineeships and fellowships in the clinical sciences (excluding dental clinical research-see below) should gradually be increased from the current level of less than 2,400 to 3,000 by 1990. In order to encourage more talented physicians to undertake research training, 85 percent of these postdoctoral awards should ie allocated to M.D.s.
2. Dertal research has not kept pace in recent years with remarkable developments in other clinical science sectors. One way to remedy that is to bolster the research training opportunities for entering faculty of dental schools where most dental investigation is conducted. Dental research training levels have fallen precipitously since 1980 and should be strengthened. The number of postdoctoral traineeships and fellowships in dental clinical research should be increased gradually from the 1984 level of about 100 to 320 by 1990.
3. The Medical Scientist Training Program (MSTP), administered by the National Institute of General Medical Sciences (NIGMS), is considered to be one of the most productive mechanisms for training physician-scientists. However, the costs of MSTP as a
share of total NIGMS funds for predoctoral training have been rising steadily. Since continuation of that trend would inevitably weaken the support of regular predoctoral programs, there is an urgent need to curb this growth in costs. To ensure an appropriate balance, we restate our earlier recomnendation that MSTP's share over the near future not exceed 25 percent of NIGMS predoctoral training funds, with a target goal of 725 trainees by 1988. We believe that level should be maintained through 1990.
4. We endorse the short-term training program for health professions students and recommend its continuation. This program is designed to introduce students in medical, dental, and other health professions schools to research methods during summer and off-quarters. It provides predoctoral stipends for up to 3 months of support for research training without payback obligation.

Minority Access to Research Careers (MARC) Honors Undergraduate Training Program

This institutional grant program provides support to third and fourth year honors undergraduates at minority institutions. The program has grown from about 250 traineeships in 1980 to about 470 in 1983. About 75 percent of these positions were in the basic biomedical sciences, 20 percent in behavioral fields, and abciat 5 percent in nursing research. We recommend that the program be maintained at its current level for the next few years.

Basic Biomedical Sciences

1. Since 1980, the number of NRSA predoctoral awards in basic biomedical science fields has dropped by over 12 percent. With about 3,400 positions provided in 1984, the program has fallen well below the comittee's recommended level. This program (excluding MARC undercraduate traineeships) should be restored to 3,750 positions in 1988 and then gradually increased to 4,150 awards by 1990. ${ }^{2}$
2. Postdoctoral training awards in the basic biomedical sciences should be gradually increased from the 1984 level of about 3,200 to a level of 3,800 by 1990.
[^1]
Behavioral Sciences

1. Predoctoral training in the behavioral sciences should be restored to the 1981 level of about 550 traineeships (excluding the MARC undergraduate awards) by 1987 and maintained at that level through 1990.
2. Postdoctoral training in the behavioral sciences should gradually increase to 540 awards in 1987 and then be maintained at that level through 1990.

Health Services Research

The committee has previously recommended that a modest training program be provided in health services research by the federal agencies under the NRSA authority, and that such authority be extended to the National Center for Health Services Research. In the early 1970s, the federal government provided support to over 800 health services research trainees and fellows per year (NRC, 1975-81). At present there is no training being provided under NRSA programs that is identified by the federal agencies as health services research. We affirm our previous recommendations that 330 awards be made annually in this area through 1990.

Nursing Research

Research on problems arising in nursing is supported primarily by the Division of Nursing, HRSA, and to a lesser extent by the NIH, the Veterans Administration, and private organizations such as the American Nurses Foundation and the Robert Wood Johnson Foundation. But practically all training for nursing research is provided by a small NRSA program administered by the Division of Nursing. Funding for training under NRSA programs in the Division of Nursing increased in FY 1985 to almost $\$ 2$ million, but the number of trainees and fellows supported is still below the level called for by this committee in past reports. Applications for fellowships in nursing research rose 50 percent in FY 1985 and are expected to increase another 30 percent in FY 1986. We recommend that nursing research training under NRSA authority be increased from the 1985 level of about 170 awards to 320 awards by 1990 .

Table 1.5 summarizes the committee's recommended number of awards by field, academic level, and mechanism for FY 1988-90. The estimated costs for the recommended programs are shown in Table l.6.

TABLE 1.5 Committee Recommendations for NIH/ADAMHA/HRSA Full-Time Predoctoral and Postdoctoral Traineeship and Fellowship Awards for FY 1988-90a

Fiscal Year	Type of Program	$\begin{aligned} & \text { TOTAL } \\ & \text { ALLL } \\ & \text { FIELDS } \end{aligned}$	Basic Biomedical Sciences ${ }^{b}$	Behavioral Sciences ${ }^{\text {c }}$	Clinical Sciences			Health Services Research ${ }^{\text {e }}$	Nursing Research
					Medical Scientist Program	Dental Clinical Research	Other Clinical Sciences Programs ${ }^{d}$		
1988 TOTAL	Total	13,035	7,510	1,190	725	200	2,800	330	280
	Predoctoral	5,470	3,750	550	725	0	0	200	245
	Postdoctoral	7,095	3,400	540	0	200	2,800	130	25
	MARC Undergrad. ${ }^{\text {R }}$	470	360	100	0	0	0	0	10
Trainees	Total	8,715	4,110	1,030	725	170	2,400	260	20
	Predoctoral	5,145	3,750	500	725	0	0	160	10
	Postdoctoral	3,100	0	430	0	170	2,400	100	0
	MAKC Undergrad. ${ }^{\text {R }}$	470	360	100	0	0	0	0	10
Fellows	Total	4,320	3,400	160	0	30	400	70	260
	Predoctoral	325	0	50	0	0	0	40	235
	Postdoctoral	3,995	3,400	110	0	30	400	30	25
1989 TOTAL	Total	13,465	7,760	1,190	725	250	2,900	330	310
	Predoctoral	5,540	3,800	550	725	0	0	200	265
	Postdoctoral	7,455	3,600	540	0	250	2,900	130	35
	MARC Undergrad. 8	470	360	100	0	0	0	0	10
Trainees	Total	8,910	4,160	1,030	725	210	2,500	260	25
	Predoctoral	5,195	3,800	500	725	0	0	160	10
	Postdoctoral	3,245	0	430	0	210	2,500	100	5
	MARC Undergrad. ${ }^{\text {R }}$	470	360	100	0	0	0	0	10
Fellows	Total	4,555	3,600	160	0	40	400	70	285
	Predoctoral	345	0	50	0	0	0	40	255
	Postdoctoral	4,210	3,600	110	0	40	400	30	30
1990 TOTAL	Total	14,195	8,310	1,190	725	320	3,000	330	320
	Predoctoral	5,900	4,150	550	725	0	0	' 200	275
	Postdoctoral	7,825	3,800	540	0	320	3,000	130	35
	MARC Undergrad. ${ }^{\text {a }}$	470	360	100	0	0	0	0	10
Trainees	Total	9,370	4,510	1,030	725	270	2,550	260	25
	Predoctoral	5,545	4,150	500	725	0	0	160	10
	Postdoctoral	3,355	0	430	0	270	2,550	100	5
	MARC Undergrad. ${ }^{\text {R }}$	470	360	100	0	0	0	0	10
Fellows	Total	4,825	3,800	160	0	50	450	70	295
	Predoctoral	355	0	50	0	0	0	40	265
	Postdoctoral	4,470	3,800	110	0	50	450	30	30

a These are total numbers of full-time awards recommended. See Table 1.2 for actual numbers of awards made in 1983 and 1984.
${ }^{6}$ Recommendations for biostatistics, community and environmental health, and other training fields not specifically shown in this table are included here.
c It is assumed that 90% of behavioral science predoctoral awards will be traineeships and that 80% of postdoctoral awards will be traineeships.
${ }^{d}$ These are fr:!l-time training positions only, 85% of which should be allocated to physicians. In addition, a program of parttime research training (up to 3 months per year) for health professions students during summer and off-quarters was authorized in 1978, with expenditures not to exceed 4% of appropriated training funds. In FY 1983, 1,417 traineeships were made available under this short-term program.

- It is assumed that 60% of these health services research awards will be predoctoral and 40% will be postdoctoral. Of the predoctoral awards, it is assumed that 80% will be traineeships. Of the postdoctoral awards, it is assumed that 75% will be traineeships.
f It is assumed that 90% of these nursing research awards will be predoctoral and $10 \% \mathrm{vij}$ be postdoctoral.
\boldsymbol{s} The Minority Access to Research Careers (MARC) Honors Undergraduate Training Prog- is for prebaccalaureate students.

TABLE 1.6 Estimated Cost of Recommended NIH/ADAMHA/HRSA Training Programs, FY 1988-90 (millions of dollars) ${ }^{\text {a }}$

Fiscal Year	Type of Program	TOTAL ALL FIELDS	Basic Biomedical Sciences	Behavioral Sciences	Clinical Sciences				Health Scrvices Research	Nursing Research
					Total	Med. Sci. Prog.	Short- Term Training ${ }^{b}$	Other Clin. Postdoc.		
1988	TOTAL	272.6	137.3	23.2	101.4	13.1	3.2	85.1	6.4	4.3
	Trainees	173.1	58.0	19.9	89.8	13.1	3.2	73.5	5.1	0.3
	Fellows	99.5	79.3	3.3	11.6	-	-	11.6	1.3	4.0
	Predoctoral	84.6	54.4	7.4	16.3	13.1	3.2	- -	2.9	3.6
	Postdoctoral	183.3	79.3	14.8	85.1	-	-	85.1	3.5	0.6
	MARC Undergrad.c	4.7	3.6	1.0	-	-	-	-	-	0.1
1989	TOTAL	284.9	143.8	23.4	106.4	13.4	3.5	89.5	6.5	4.8
	Trainees	180.2	59.9	20.1	94.6	13.4	3.5	77.7	5.2	0.4
	Fellows	104.7	83.9	3.3	11.8	-	-	11.8	1.3	4.4
	Predoctoral	87.6	56.2	7.6	16.9	13.4	3.5	-	3.0	3.9
	Postdoctoral	192.5	83.9	14.8	89.5	-	-	89.5	3.5	0.8
	MARC Undergrad.c	4.8	3.7	1.0	-	-	-	-	-	0.1
1990	TOTAL	302.3	155.0	23.7	112.0	13.8	3.7	94.5	6.5	5.1
	Trainees	190.9	66.4	20.3	98.6	13.8	3.7	81.1	5.2	0.4
	Fellows	111.4	88.6	3.4	13.4	-	-	13.4	1.3	4.7
	Predoctoral	95.2	62.7	7.8	17.5	13.8	3.7	-	3.0	4.2
	Postdoctoral	202.3	88.6	14.9	94.5	-	-	94.5	3.5	0.8
	MARC Undergrad.c	4.8	3.7	1.0	-	-	-	-	-	0.1

${ }^{\text {a }}$ Calculations were based on 1984 average cost figures derived from NIH data and assumed the following: 1) a $\mathbf{2 3 . 8} \%$ increase in predoctoral stipends and a $\mathbf{3 6 . 3 \%}$ increase in postdoctoral stipends for FY 1985, held constant for later years; 2) a 5% per year increase in tuition; and 3) maximum annual institutional costs of $\$ 1,500$ for predoctoral trainees and fellows, $\$ 2,500$ for postdoctoral trainees, and $\$ 3,000$ for postdoctoral fellows. The stipend increases became effective in FY 1985.
${ }^{6}$ Estimate assumes 1,500 trainees for 1988, 1,600 trainees for 1989, and 1,700 trainees for 1990.
${ }^{\text {c }}$ The Minority Access to Research Centers (MARC) Honors Undergraduate Training Program is for prebaccalaureate students.
ESTIMATED TRAINING COSTS PER AWARD IN FY 1984 (dollars)

FY 1984	Predoctoral						Postdoctoral					Prebaccalaureate MARC Honors Undergrad.
	Clinical Sciences											
	Basic Biomed. Sci.	Behavioral Sci.	Med. Sci. Prog.	Short- Term Training	Health Services Research	Nursing Research	Biomed. Sci.	Behav- ioral Sci.	$\begin{aligned} & \text { Clinical } \\ & \text { Sci. } \end{aligned}$	Health Services Research	Nursing Research	
Trainees	12,385	11,579	15,276	1,833	12,385	12,385	22,236	22,425	22,858	22,236	22,236	13,948 ${ }^{\text {a }}$
Fellows	12,385	11,579	-	-	12,385	12,385	17,790	18,510	20,473	17,790	17,790	-

${ }^{a}$ This estimate applies to all fields.

2. Clinical Sciences

Abstract

Important changes are taking place in the way medical schools are financing their operations and structuring their faculties. There is now more emphasis on revenue-generating patient care and relatively less on research. This shift has brought with it a corresponding restructuring of faculty composition and activity. Physician members of clinical departments are finding it more difficult to compete successfully for $N I H$ research grants but Ph.D.s have gained appointments in clinical departments at a rapid pace and have increased their share of research grants. Physicians are applying for research grants at about the same rate as a decade ago but are having less success in obtaining them.

In dental schools, the financial arrangements are quite different. State and local government contributions are the dominant source of revenues and have become increasingly important as the federal contribution has been drastically curtailed. Tuition, accounting for over 20 percent of total revenue in dental schools compared with less than 6 percent in medical schools, highlights some important differences between medical and dental education. In contrast to medical education in which residents and fellows receive salary or stipend during training, many dental trainees in advanced specialty programs must pay tuition and receive no financial support from federal or other sources.

Clinical faculties in both medical and dental schools have continued to expand, financed by growth in total revenue. The committee believes that more newly hired clinical faculty members should have some research training if the professional schools are to maintain their clinical research capability.

INTRODUCTION AND OVERVIEW

In this chapter we look ahead to 1990 and try to estimate the research training levels in the clinical sciences ${ }^{2}$ under the NRSA programs that would satisfy national needs as perceived by the committee.

The basic premise upon which the committee's assessment of national need has been developed is that the government's research training program serves as an adjunct to its research progran and should be administered to ensure the availability of an adequate number of highly trained scientists to conduct that research. This has led to considerations of how large the research effort will be in the future and how many scientists will be needed to support it. Since most of the government-sponsored research in the clinical sciences is performed in medical, dental, and veterinary schools by faculty members, the committee has concentrated mainly on an analysis of these groups.

It is well known that health professions schools generally do not, and perhaps should not, prepare their students for research careers. Preparation for a research career has normally been a postdoctoral phenomenon since medical school and residency training provide little or no opportunity for the acquisition of research skills. But since physicians and dentists have a unique role to play in clinical investigation, some provision must be made for providing them with the requisite tools for a research career. Most often it is during a two or three-year period of postdoctoral training that the necessary research background is acquired. The question that concerns us in this study is how many clinical scientists should receive postdoctoral research training each year under NRSA programs? That depends in part on the number of clinical faculty positions in medical and dental schcols, which in turn depends on encollments and the availability of funds from research grants, tuition, faculty practice plans, and other sources. We will examine the trends in these variables from the early l960s to date and then make projections of some of the key items through 1990.

MEDICAL SCHOOL TRENDS

Recent trends through 1983 in medical school enrollments, faculty, and financing are summarized in Table 2.1 and are presented in more detail in Appendix Tables Al-ll.2. Here are some highlights:

- Enrollment in graduate medical education programs (residents and fellows) continued to expand sharply even though the number of medical school graduates slowed noticeably. undergraduate

[^2]TABLE 2.1 Current Trends in Supply/Demand Indicators in the Clinical Sciences

	Fiscal ${ }^{\text {P }}$							1983a	Annual Growth Rate Irom 1976 to Latest Year	Lutest Annual Change	Arg. Annual Change from 1976 to Latest Year
I. SUPPLY INDICATORS (New Entrants): a. Prolessional doctorales participating in NIH Iraining grants and fellowships ${ }^{\text {b }}$	1,970	1,927	1,981	2,005	2,195	2, 111	P ither	10/a	1.7\%	2.5\%	36
b. M.D. degrees awarded	13,634	13,614	14,391	14,966	15,135	10.4 .1	1., ${ }^{\prime}$	15,801	2.1\%	-1.2%	310
2. DEMAND INDICATORS: a. Expenditures for clinical \mathbf{R} and D in medical schools (1972 S, mill.)	\$232	5268	\$282	\$273	\$296	5288	5295	\$315	4.5\%	6.8\%	\$11.9
b. Professional service income in medical schools (1972 S, mil.)	\$306	5391	\$406	\$44	\$493	5526	\$612	\$740	13,4\%	20.9\%	\$62.0
c. Total revenue (all sources), (1972 S, mil.)	\$2,531	\$2,781	\$2,839	\$2,965	53,195	53,293	\$3,488	3,793	5.9%	8.9\%	\$180.3
d. Budgeted vacancies in niedical schools:											
(1) Clinical departments (2) Basic science departments	$\begin{array}{r} 1,782 \\ 664 \end{array}$	$\begin{array}{r} 1,865 \\ 638 \end{array}$	$\begin{array}{r} 2,000 \\ 697 \end{array}$	$\begin{array}{r} 2,100 \\ 721 \end{array}$	2,279 776	2,231 656	2,264 668	2,270 671	$\begin{aligned} & 3.5 \% \\ & 1.1 \% \end{aligned}$	0.3% 0.4%	70
e. Clinical faculty/student ratiod	0.306	0.311	0.322	0.323	0.334	0.331	0.341	0.346	1.8\%	1.5\%	0.006
3. LABOR FORCE:											
a. M.D.s primarily engaged in research ${ }^{\text {P }}$ h. Fullotime faculty in clinical	8,514	9,786	11,437	14,515	15,377	17,901	16,743	18,535	11.8\%	10.7\%	1,432
departments	28,603	30,349	32,622	34,057	36,665	37,716	40,148	41,938	5.6\%	4.5\%	1,905
c. NIH research grants awarded to M.D.s:											
(1) Number of competing grants	1,301	1,301	1,538	1,676	1,482	1,450	1,357	1,466	1.7\%	8.0\%	24
(2) \% of total competing grants	30\%	31\%	28\%	27\%	28\%	27\%	26\%	26\%	-2.0\%	0.0\%	-0.6\%
d. M.D. applicants for NIH research grants:											
(1) Number of competing applicants	2,841	3,161	3,311	3,282	3,328	3,251	3,395	3,768	4.1\%	11.0\%	132
(2) \% of total competing applicants	29\%	29\%	28\%	27\%	28\%	26\%	25\%	24\%	-2.7\%	-4.0\%	-0.7\%
e. M.D. success rate (awards/applicants)	0.46	0.41	0.46	0.51	0.45	0.45	0.40	0.39	-2.3\%	-2.5\%	-0.01\%
4. ENROLLMENTS:											
a. Medical students	56,244	58,266	60,424	62,582	64,020	65,412	66,484	66,886	2.5\%	0.6\%	1,520
h. Residents and clinical fellowsf	43,908	44,795	46,444	50,188	52,491	52,871	57,504	59,138	4.3\%	2.8\%	2,176
c. Total	100,152	103,061	106,868	112,770	116,511	118,283	123,988	126,024	3.3\%	1.6\%	3,6\%

- Financial data from the University of Washington and Mayo Medical School were included for the first lime in 1983.
- Includes Fogarty International Center programs.
© Does not inciude Transition Quarter.
\$Ratio of fullotime clinical faculty to a 4 -year weighted average of total enrollments of medical students, residents, and ciinical fellows (WS), where $(W S)_{1}=1 / 4 S_{1}+2 S_{t-1}+$ $2 \mathrm{~S}_{\mathrm{t}-2}+\mathrm{S}_{\mathrm{t}-3}$).
- There is some question about the interpretation of these data since they include many trainees in graduate medical programs.
/The residents and clinical fellows reported here include only those in accredited programs affiliated whith medical schools.
SOURCES: AAMC (I972-85, special tabulations generated annually from 1982-85); AMA (1960-84, 1961-85); NIH (1966-84); NRC (1979-85, Query \#5).
medical school enrollment showed very little growth since 1981 as expected, but the total of undergraduate and graduate enrollments jumped in FY 1982 in both public and private schools as a result of the increases in graduate programs.
- Instead of proceeding at modest growth rates for a few years as expected, reported professional service income in medical schools had huge gains in FY 1982 and again in FY 1983. This revenue source increased by 16 percent in $F Y 1982$ and 21 percent in FY 1983 after adjusting for inflation. The committee does not anticipate continued growth at these high rates.
- Clinical R and D expenditures in medical schools were about as expected, increasing moderately from 1980 to 1983.
- The growth of full-time faculty in clinical departments moderated somewhat from earlier years, but there was a sizeable jump of over 6 percent in 1982. The strong surge in service income for that year indicates that the faculty expansion was probably due more to clinical than to research activities.

Medical School Enrollments

For purposes of this study, we consider medical school enrollments to be composed of medical students plus residents and fellows in affiliated hospitals.

The number of medical students has increased only slightly since 1981, as expected, but the number of residents and fellows had larger than expected gains between 1981 and 1982 which more than offset the leveling off of medical students (Table 2.1 , line 4). The net result is that total medical school enrollment increased at an annual rate of 3.2 percent from 1981 to 1983 -about the same growth pattern exhibited since 1976.

The committee noted in its 1983 report (p . 22) the possibility that graduate medical programs might expand. The latest data give evidence that this has been happening. Since 1981, the number of medical school graduates increased by only 0.4 percent per year, but the number of residents and clinical fellows increased by 5.4 percent per year. The reasons are unclear but may have to do with the influx of U.S. foreign medical graduates and a lengthening of the residency years due to the growing complexity of medical services.

We expect medical student enrollment to decline by about 1 percent per year on average between 1983 and 1990 (Figure 2.1). That expectation, however, may be conservative in light of the decline since 1982 in size of the 20-24 year age group--the population from which medical school applicants are drawn. Coincident with this change, a 9 percent decrease occurred in the number of applications for the l985-86 entering class, compared with the preceding year.

FIGURE 2.1 Medical students, residents, and clinical fellows, 1961-83, with projections to 1990. See Appendix Table A1.

Clinical \mathbf{R} and \mathbf{D} Expenditures

Since 1980, estimated expenditures for clinical R and D in medical schools have increased moderately after adjustment for inflation (Table 2.1, line $2 a^{2}$). The average increase--2.1 percent per

[^3]year--was about what the committee had anticipated in its last report. We expect those funds to continue on a moderate growth path of : ?nut 0.5 percent per year in constant dollar terms between 1983 ar.: 190 (Figure 2.2).

- ρ to 1980, private medical schools have had higher levels of reswrch expenditures than public schools in the aggregate (Appendix Table A7). But since then, public schools have overtaken private schools with respect to these expenditures. This is partly due to the fast growth in tie e number of public schools. Clinical R and D in public schools grew at an annual rate of 3.7 percent since 1980 as compared with only 0.5 percent per year in private schools.

Nevertheless, private schools remain generally more researchintensive than public schools, as measured by research expenditures per school. Average clinical R and D expenditures were just over $\$ 3$ million per school in private schools in 1983 compared with about $\$ 2$ million per school in public schools (Appendix Table A9).

Professional Service Income

Perhaps the most striking recent development is the renewed upward surge in service income generated by medical school faculty practice plans in 1982 and 1983 due mainly to the expansion of patient care activities in clinical departments. This revenue source, which grew quite rapidly in the early 1970s, appeared to be growing more moderately in the late 1970s. But in 1982 it climbed 16 percent over 1981 and 21 percent in 1983 after adjusting for inflation (Table 2.1, line Rb).

Because of changes being implemented in Medicare and Medicaid programs and the likely adoption of similar cost containment measures by other health insurers, we do not expect this rapid growth to continue. Our best guess is for real growth of about 3.5 percent per year through 1:90 (Figure 2.3).

Both public and private schools showed strong gains. On a per school basis, service income grew in real terms by about 10 percent per year in both public and private schools since 1981 (Appendix Table A9).

Total Medical School Revenue

Service income and federal research funds contributed over half of all medical school revenues in 1983 (Table 2.2). Another large portion came from state and local government sources. Tuition contributed only a small amount to total revenue--less than 6 percent in 1983--but it is second only to service income in rate of growth. Increases in tuition--18.5 percent per year since 1971- and steep borrowing rates have contributed largely to the growth in student indebtedness. Despite a study finding suggesting that financial pressures do not influence career choice by internists (Block and Swisher, 1980), medical student indebtedness, as noted in several committee reports, may nevertheless operate as a deterrent to their pursuit of research training.

FIGURE 2.2 Clinicai R and D expenditures per school in U.S. medical schools, by control of institution, 1962-83, with projections to 1990 ($1972 \$$, nillions). See Appendix Table A9.

FIGURE 2.3 Professional service income per school reported by U.S. medical schools, by control of institution, 1962-83, with projections to 1990 (1972 \$, millions). See Appendix Table \AA^{\sim}

Even with the disparate growth rates of the various components in Table 2.2, total revenue has been quite stable. In fact it has grown at a steady rate of about 5.5 percent per year since 1965 after adjustment for inflation (Figure 2.4), and we expect continued growth through 1990, but at a slower rate of about 3 percent annually.

The contrast between dental and medical school finances is quickly apparent by comparing the sources in Tables 2.2 and 2.3. Whereas medical schoois depend heavily on service income and research funds, the main sources in dental schools are state and local governments and tuition. This fact has important implications in this study because it bears on the types of activities engaged in by faculty in these schools. Medical, service income is generated largely through medical school faculty practice plans whereas clinic income in dental schools is largely generated in student clinics. Also, the tradition of research in medical schools is much stronger than in dental schools, but the rapid growth of service income in medical schools portends relatively less emphasis on research, especially in clinical departments.

TABLE 2.2 Trends in U.S. Medical School Revenues (\$ millions, ${ }^{\text {a }}$

Revenue Source	Fiscal Year									
	1971		1976		1981		1982		1983	
	\$	\%	\$	\%	\$	\%	\$	\%	\$	\%
Federal Research	438	25.6	823	24.3	1,446	22.5	1,578	21.9	1,655	20.
Other Federal	322	18.8	398	11.7	396	6.2	415	5.8	415	5.1
State and Local Gov't.	323	18.9	808	23.8	1,452	22.6	1,617	22.4	1,784	21.8
Tuition and Fees	63	3.7	156	4.6	346	5.4	413	5.7	482	5.5
Medical Service	209	12.2	609	18.0	1,850	28.8	2,140	29.7	2,626	32.1
Other Income	358	20.9	595	17.6	935	14.6	1,054	14.6	1,216	14.9
TOTAL	1,713	100.0	3,389	100.0	6,425	100.0	7,217	100.0	8,179	100.1

a The data in this table may not agree with others shown in this report. This table was derived by the AMA by combinin indirect cost recoveries with the associated sponsored programs, and by segregating the service components in federal, stat: and local government and nongovernment sponsored programs from the nonservice components. These service component generally involve contracts for provision of medical service in hospitals.

SOURCE: American Medical Association (JAMA, September 28, 1984, p. 1536).

TABLE 2.3 Trends in U.S. Dental School Revenues (\$ millions)

Revenue Source	Fiscal Year							
	1972		1976		1981		1982	
	\$	\%	\$	\%	\$	\%	\$	\%
Federal Research	18	9.2	26	7.5	45	7.4	47	7.:
Other Federal	37	18.9	57	16.4	36	5.9	24	3.
State and Local Gov't.	68	34.7	145	41.7	296	48.8	314	48.:
Tuition and Fees	36	18.4	58	16.7	116	19.1	147	22.1
Dental Clinic	21	10.7	39	11.2	74	12.2	82	12.1
Other	16	8.2	23	6.6	40	6.6	37	5.:
TOTAL	196	100.0	348	100.0	607	100.0	651	100.1

SOURCE: American Dental Association (1969-84).

FIGURE 2.4 Total revenue per medical school, by control of institution, 1964-83, with projections to 1990 (1972 \$, millions). See Appendix Table All.2.

THE CHANGING FINANCIAL STRUCTURE OF MEDICAL EDUCATION

A striking change in the pattern of financing medical schools has occurred in the past 15 years. In 1971, federal research programs were the dominant source of funds-accounting for over 25 percent of total revenues. Gracually during the $19 \% 0$ s, aggregate revenues from research were overtaken by medical service income and state and local government contributions. By 1983, service income generated by faculty practice plans accounted for almost 33 percent of total revenue and had become the largest single source of funds. Federal research funds had fallen far behind at about 20 percent of revenues. Al.though federal research funds are still the major source of support in some research-intensive medical schools, they have nevertheless declined as a percent of total revenues even in those institutions, concurrent with a rise in the proportion of dollars derived from patient care (Rosenberg, 1985). Another important change during the 1970 s was the decline of capitation grants and their ultimate termination in 1982.

Increasing dependence on medical service income has a potential for eroding institutional commitments to research and clinical scholarship. This dependence results in less time to prepare grant proposals, collect data, write papers, and generally makes it more difficult to compete successfully for grant support. In past years, some revenue derived from patient care has been made available to support research activities in clinical departments. But as pressure builds to restrain the growth of Medicare/Medicaid expenditures and cost sharing becomes more widespread in private health insurance plans, patient care revenues will face more intensive competition for their disbursement among departmental activities, and research is likely to suffer. Privately controlled schools are at particular risk in that respect because they do not receive large state and local government contributions. publicly controlled schools are able to partly cushion the loss of federal funds with increased appropriations of state/local government monies. For most private medical schools, these funds are a relatively minor source of support. Consequently, their reliance on professional service income is more compelling. Moreover, preoccupation with financing is likely to favor the recruitment of clinician-teachers over physician-investigators as expansion of the clinical faculty decelerates.

The trend for clinical departments to hire more clinicians and fewer M.D. researchers has been reinforced by the growth of subspecialization of practice in teaching hospitals and by the increased professionalization of biomedical research. The training requirements for independent investigators have become so technically demanding that a physician, even after two or three years of a research fellowship, is generally less well-trained for research than the $\mathrm{Ph} . \mathrm{D}$. who has been preparing for such a career since the baccalaureate. There are also more Ph.D.s applying for NIH grants. These facts help explain the drop in M.D. share of competing NIH research grants, which fell from 36.1 percent in FY 1973 to 25.5 percent in FY 1983, compared with an increase from 53.4 percent to 65.5 percent over the same period for Ph.D.s (NRC, 1979-85). That decline has been attributed to reduced award rates, rather than fewer applications, by young M.D. investigators (Carter et al., 1983). Because of financial pressure it is understandable that clinical departments are placing even greater emphasis on practice over research, and/ór recruiting Ph.D. scientists to help sustain a significant level of research activity. ${ }^{3}$

THE MARKET OUTLOOK

Our approach to the task of estimating training needs in the clinical sciences has been to try to estimate the demand for full-time

[^4]faculty in clinical departments of professional schools (medical, dental, and veterinary) created by both expansion and attrition, and then to determine what adjustments should be made to the training system so that it produces the required number of trained researchers. Similar approaches have been utilized for the biomedical and behavioral sciences in Chapters 3 and 4.

To estimate demand due to expansion of faculty, we have developed analytic models that relate faculty size to enrollments and revenue. The panels associated with this committee make assumptions about the future pattern of these two (exogenous) variables--enrollments and revenue-which in turn are used to estimate future faculty size. This produces estimates of demand due to expansion (or contraction) of faculty, to which is added replacement demand created by faculty attrition due to death, retirement, and other causes.

The dynamics of the system are vital to the committee's assessment of need for training. As faculty vacancies occur, they will be filled partially by new entrants to the supply of clinical scientists. Most of them will be young physicians who aspire to careers in academic medicine, but the evidence suggests that only a moderately small portion (currently about 25 percent) of those individuals joining clinical faculties in medical schools will have had postdoctoral research training.

The number of newly hired faculty members with postdoctoral research training is a critical parameter in the system because the committee believes that the ability of medical schools to conduct an effective clinical research program depends to a large extent on the replenishment of clinical faculty by new entrants who have been exposed to research techniques thro: : a formal postdoctoral training program of at least two years. It so also a part of the system over which there can be some administrative control. The committee has recommended that the training system be adjusted so that 35 percent ${ }^{4}$ of all new hires to clinical faculty positions in medical schools would have completed a period of formal postdoctoral research training.

With estimates of demand for clinical faculty, and with a target. level for the number of new hires with research training experience, the committee can estimate the number of clinical science postdoctoral trainees who should be in the pipeline eacn year. Three additional parameters of the training system are needed to complete the analysis: the appropriate length of the postdoctoral training period, the percentage of postdoctoral trainees who select academic careers, and the percentage of the postdoctoral trainees who should be supported under NRSA programs. These will be discussed in more detail after the projections of faculty demand are presented.

[^5]
DEMAND FOR CLINICAL FACULTY IN MEDICAL SCHOOLS

Enrollments, revenue, and clinical faculty size are the basic elements in the analytic model we have developed to help assess personnel needs for the clinical sciences in medical schools. The model is based on the proposition that the ratio of clinical faculty to enrollments is largely determined by the amount of funds available to support faculty in each school.

The effect of changes in enrollment on the size of clinical faculty in medical schools has been the subject of much discussion within the committee over the past several years. Enrollments have always been used in the committee's analyses as a determinant of faculty demand. But the financial structure of medical education is changing in ways that tend to lessen the dependence of clinical faculty growth on the number of students. Service income from faculty practice plans is now the single largest source of revenue in medical schools.

For the committee's 1983 report, the demand model was modified somewhat to reflect the view that yearly changes in enrollments are not immediately reflected in corresponding changes in clinical faculty. Enrollments were averaged over 4 years rather than using the current year's data. Some members feel, hovover, that this adjustment is insufficient and that clinical faculty size should be more directly related to total revenue.

The matter is further complicated by the relationship between clinical faculty size and medical seryice income. Since this income is generated by clinical faculty members, the number of faculty engaged in patient care should generally determine the amount of revenue received from this source. Others have pointed out that the relationships between enrollment and faculty, and between research and patient care revenues, vary greatly from school to school. Whether the school is privately or publicly controlled also is a factor.

Unfortunately, the data over the past two decades do not provide much help in deciding the issue. Models with and without enrollments as a component of faculty demand have approximately equal goodness-offit to the data. We hope that as additional data are collected, the issue may be clarified. For now the committee has elected to retain enrollment as a factor in the model. ${ }^{5}$

When the ratio of clinical faculty to enrollment is plotted against total revenue per school, the annual observations over the period 1964-83 form a nonlinear pattern as shown in Figure 2.5. A constrained growth curve of the following form has been fitted to these data:

[^6]```
 \(C F / W S=e^{a-b / T}+c\)
 where: \(\quad C F=\) full-time clinical faculty in U.S. medical schools
 WS = 4-year weighted average of students, i.e.,
 \((W S)_{t}=1 / 6\left(S_{t}+2 S_{t-1}+2 S_{t-2}+S_{t-3}\right)\),
 where \(S=\) total of medical students, residents, and
 clinical fellows
 \(T=\) total revenue per school (1972 \$, millions)
 \(\mathbf{c}=\) scaling constant: \(C F / W S=c\) when \(T=0\)
 \(a, b=\) parameters to be determined empirically
```

The parameters of the model were estimated from 20 annual observations covering the 1964-83 period. ${ }^{6}$

The model shown in Figure 2.5 is used to derive estimates of clinical faculty size for given levels of revenue ( $T$ ) and enrollments (WS). In this formulation, revenue per school ( $T$ ) determines the faculty/student ratio (CF/WS), which when multiplied by the enrollment estimate provides an estimate of clinical faculty size (CF).

A-cיmptions
To project clinical faculty size in 1990 with this model, it is necessary to make some assumptions about enrollment and revenue trends. With the assistance 0 : the Panel on Clinical Sciences, the committee has made the following assumptions about the growth in these variables from 1983 to 1990.

1. Enrollment: Medical school enrollment, defined as medical students, residents, and clinical fellows, is expected to decline by about $l$ percent per year between 1983 and 1990. The upper and lower limits on this expected change in enrollment are +1 percent per year and -3 percent per year, respectively.
2. Total revenue per school: the best-guess assumption is for real growth (after adjusting for inflation) of about 3 percent per Year. Upper and lower limits on this estimate are 6 percent and 0 percent per year, respectively.
${ }^{6}$ Parameters values are calculated as follows:

| Parameter | Public Schools | Private Schools | All Schools |
| :---: | :---: | :---: | :---: |
| a | -0.89529 | -0.53442 | -0.71036 |
| b | 9,014.7 | 13,762.2 | 11,292.9 |
| $\mathrm{C}_{2}$ | 0.01 | 0.01 | 0.01 |
| $\mathrm{R}^{2}$ | 0.924 | 0.961 | 0.975 |
| Std. Error | 0.0475 | 0.0460 | 0.0308 |
| N | 20 | 20 | 20 |

$R^{2}$ is defined as the coefficient of determination. Its value must lie between 0 and 1 and is a measure of how well the assumed function fits the data, with $R^{2}=1$ representing a perfect fit. Std. Error (standard error of estimate) measures the amount of variation around the fitted curve.


FIGURE 2.5 Clinical faculty/student ratio (CF/WS) vs. total revenue per medical school (T/S). The ratio is defined as follows: $\mathrm{CF}=$ full-time faculty in clinical departments of U.S. medical schools; WS $=4$-year weighted average of students, i.e., $(W S)_{t}=1 / 6\left(S_{t}+2 S_{t-1}+2 S_{t-2}+\right.$ $S_{t-3}$ ), where $S=$ total of medical students, residents, and clinical fellows. Solid line represents a growth curve of the form: $Y=e^{(a-b / x)}+c$ with parameters $a=-0.71036, b=11292.9$, $\mathrm{c}=0.01$. These were derived from 20 a nnual observations, 1964-83. See Appendix Tables A3 and A11.2.

The upper and lower limits placed on these assumed growth rates are used in the model to make the alternative projections shown in Table 2.4.

Projections of Demand for Medical School Clinical Faculty to 1990
Given the model and assumptions about growth in enrollment and revenue, we now make projections of clinical faculty to 1990 (Figure 2.6). The three assumptions about enrollment and three about revenue give nine combinations to consider. The results of each combination are shown in Table 2.4.

TABLE 2.4 Projected Growth in Medical School Clinical Faculy, 1983-90, Based on Projections of Medical School Enrollment and Total Revenue per School ${ }^{\boldsymbol{a}}$

| Assumptions about Medical Student Enrollment (medical students, residents, and clinical fellows: 126,000 in 1983) |  | Asst: $n$ ptions about Total Revenue per School (in constant 1972 dollars ${ }^{\text {b }}$ ) in Medical Schools ( $\$ 30.6$ million per school in 1983) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 11 | 111 |
|  |  | Will expand at about $6 \% / y r$. to $\$ 46.0$ million per school in 1990 | Will expand at about $3 \% / \mathrm{yr}$. to $\$ 37.6$ nillion per school in 1990 | Will remain at the 1983 level of $\$ 30.6$ million per school |
| A. Will grow at $1 \% / \mathrm{yr}$., reaching $\mathbf{1 3 5 , 0 0 0}$ students by 1990 | Expected size of clinical faculty in medical schosis (CF) in 1990 Annual growth raie in CF from 1983 to 1990 | 54,100 3.7\% | $\begin{array}{r} 49,800 \\ 2.5 \% \end{array}$ | $\begin{array}{r} 45,600 \\ \\ \hline \end{array}$ |
|  | Average annual increment due in faculty expansion Annual replacement needs due to: death and retirement ${ }^{c}$ other attritiond | $\begin{array}{r} 1,740 \\ 720 \\ 2,400 \\ \hline \end{array}$ | $\begin{array}{r} 1,120 \\ 690 \\ 2,060 \\ \hline \end{array}$ | $\begin{array}{r} 520 \\ 660 \\ 1,750 \\ \hline \end{array}$ |
|  | Expected number of positions to become available annually on clinical faculties | 4,860 | 3,870 | 2,930 |
| B. Will decline by $\mathbf{1 \%} / \mathrm{yr}$. to 117,500 students by 1990 | Expected size of clinical faculty in medical schools (CF) in 1990 Annual growth rate in CF from 1983 to 1990 | 48,500 2.1\% | $\begin{array}{r} \text { n } \\ n . x \% \end{array}$ | $\begin{array}{r} 40,800 \\ -0.4 \% \\ \hline \end{array}$ |
|  | Average annual increment due to faculty expansion Annual replacement needs due to: death and retirement ${ }^{c}$ other altritiond | $\begin{array}{r} 930 \\ 680 \\ 2,260 \\ \hline \end{array}$ | $\begin{array}{r} 380 \\ 650 \\ 1,950 \\ \hline \end{array}$ | $\begin{array}{r} -160 \\ 620 \\ 1,650 \\ \hline \end{array}$ |
|  | Expected number of positions to become available annually on clinical faculties | 3,870 | 2,980 | 2,110 |
| C. Will decline by $\mathbf{3 \%} / \mathrm{yr}$. to 101,800 students by 1990 | Expected size of clinical faculty in medical schools (CF) in 1990 Annual growth rate in CF from $\qquad$ 1983 to 1990 | 43,300 $\mathbf{0 . 5 \%}$ | 39,900 $-0.7 \%$ | $\begin{array}{r} 36,500 \\ -2.0 \% \\ \hline \end{array}$ |
|  | Average annual increment due to faculty expansion Annual replacement needs due to: death and retirement ${ }^{c}$ other attritiond | $\begin{array}{r} 200 \\ \mathbf{6 4 0} \\ \mathbf{2 , 1 3 0} \\ \hline \end{array}$ | $\begin{array}{r} -290 \\ 610 \\ 1,840 \\ \hline \end{array}$ | $\begin{array}{r} -780 \\ 590 \\ 1,570 \\ \hline \end{array}$ |
|  | Expected number of positions to become available annually on clinical faculties | 2,970 | 2,160 | 1,380 |

$\bar{a}$ Faculty in this table is defined as a full-time appointment in a clinical department regardless of tenure status. These projections are based on the following relationship:
$(C F / W S)_{t}=\exp \left(-0.71036-11293 / T_{t}\right)+0.01$, where $C F=$ size of clinical faculty in medical schools; WS $=$ weighted average of last 4 years of enrollments, i.e., (WS $)_{t}=1 / 6\left(S_{t}+2 S_{t-1}+2 S_{t-2}+S_{t-3}\right)$, where $S=$ medical students, residents, and clinical fellows; $T=$ total revenue per school in U.S. medical schools in year $\mathbf{t}$ ( $1972 \$$, millions). See Appendix Tables A1, A3, and A11.2.
${ }^{b}$ Deflated by the Implicit GNP Price Deflator, $1972=100.0$. See Appendix Table A7.
${ }^{c}$ Based on an estimated replacement rate of $1.5 \%$ annually due to death and retirement. See AAMC (1981a).
${ }^{d}$ Based on high, middle, and low attrition rates of $5 \%, \mathbf{4 . 5 \%}$, and $\mathbf{4 \%}$, respectively.


FIGURE 2.6 Clinical faculty in U.S. medical schools, by control of institution, 1961.83, with projections to 1990. Faculty is defined as full-time appointments in clinical departments regardless of tenure status. See Appendix Table A2.

Estimates of demand are derived from both expansion of faculty and replacement due to attrition. Demand due to expansion is determined by the model discussed above along with the revenue and enrollment assumptions. Demand created by attrition is estimated at 1.5 percent for death and retirement and from 4 to 5 percent per year for other reasons. The death and retirement rate estimates are higher than the 1 percent per year used in prior reports because the faculty age distribution is shifting upward and an increasing number of faculty members are expected to reach retirement age by 1990.

Under the most optimistic assumption about total revenue (assumption I in Table 2.4), these funds would grow by 6 percent per year through 1990 to about $\$ 46$ million per school in constant 1972 dollars, allowing the clinical faculty/stuadent ratio in medical schools to rise to 0.394 from its 1983 value of $0.346 .{ }^{7}$ This

[^7]produces an estimated upper limit for clinical faculty size of 54,100 members by 1990 , for a faculty growth rate of 3.7 percent per year.

About 1,740 positions would be created by expansion, with another 720 created by attrition due to death and retirement, and 2,400 created by individuals leaving faculty positions for other employment. The total number of clinical faculty positions that would become available each year under these high growth assumptions is estimated at 4,860.

Under the middle or best-guess assumption (II of Table 2.4). revenue would expand by about 3 percent per year through 1990 to $\$ 37.6$ million per school. The best estimate of clinical faculty size in 1990 under this assumption is 44,600 , an increase of 380 positions per year or 0.8 percent per year over the 1983 level. Attrition from all causes would add another 2,600 positions to give an estimated total annual demand for medical school clinical faculty of 2,980. This is the committee's most likely projection.

Under the low growth assumption (III of Table 2.4), revenue would remain at the 1983 level of about $\$ 30.6$ million per school through 1990. Consequently, the cstimated clinical faculty/student ratio would be 0.350 with upper and lower 95 percent confidence limits of 0.357 and 0.342 , respectively. Using the lower estimate of 0.342 to represent the most pessimistic conditions, we estimate that clinical faculty size under the worst-case conditions would decrease by 780 positions per year from 1983 levels. But attrition would create an estimated 2,160 positions per year for a minimum demand of 1,380 positions.

## POSTDOCTORAL TRAINING NEEDS FOR MEDICAL SCHOOL CLINICAL FACULTY

Translating our projections of demand for clinical faculty in medical schools into estimated postdoctoral needs under NRSA programs requires certain additional assumptions about how the system has functioned in recent years with regard to postdoctoral training and its sources of support.

Certain features of the system are key elements in describing how it produces the trained personnel required to fill the faculty vacancies created by expansion and attrition. The elements that must be considered are as follows:
l. the number of accessions to clinical faculty positions who have (or should have) research training,
2. the appropriate length of the research training period,
3. the proportion of individuals in the research training pipeline who are expected to choose academic careers,
4. the proportion of support of the total pool of clinical research trainees that should be provided by the federal government,
5. contributions to academic demand generated by demand for clinical faculty in veterinary schools. ${ }^{8}$

[^8]The numeric values assigned to these features in Table 2.5-first presented in the committee's 1981 report-are based either on currently available data about the system (which is admittedly incomplete), or on the committee's judgment of how the system should operate.

Using the projections of academic demand derived in Table 2.4, we calculate in Table 2.5 the range of postdoctoral trainees that should be supported by NRSA programs to satisfy expected demand for clinical faculty in medical and veterinary schools under the specified conditions.

Line 1 of Table 2.5 is a summary of the projections of academic demand for the extreme cases and the best-guess estimate derived in Table 2.4.

Line 2 provides an estimate of the demand for faculty in veterinary schools.

Line 3 shows the total annual demand for clinical faculty under each set of conditions. Total annual academic demand is expected to be between 1,440 and 5,060 positions with a best guess of about 3,100 positions.

Line 4 shows the number of clinical faculty positions to be filled by individuals with postdoctoral research training experience assuni.ing that 35 percent of all accessions to academic positions will be former postdoctoral trainees. In the best-guess case, this number is estimated to be 1,080 . We are aware that currently only about 25 percent of new clinical faculty members each year have had some postdoctoral research training. For several years now this committee has been recommending that the system be adjusted so that more clinical faculty recruits will have had research training experience.

Line 5 indicates the size of the clinical science postdoctoral pool required to supply the necessary number of individuals with postdoctoral research training under certain assump+ions about the length of the postdoctoral training period and the $\varepsilon$ p portion of the pool seeking academic employment.

In previous reports, the committec has based ; $;$ in part on the assumption of a 2-year research ti,..... period for clinical science postdoctoral trainees. Because r- ., rapidly growing complexity of modern clinical research, the committee has revised this assumption to a postdoctoral research training period of at least 2 years. Assuming that the duration of postdoctoral research training will be 2-3 years, with an average of $2-1 / 2$ years, then the pool size needed to produce 1,080 trained scientists each year would be about 2,700. If only 50 percent of the trainees seek academic appointments after completing their training, then the necessary pool size must be 5,400. We assume that some support for postdoctoral research training is also available from sources other than the NRSA programs. This is dealt with in line 6 of this table.

Line 6 shows the estimated number of clinical science postdoctoral trainees that should be supported annually by NRSA programs under different assumptions about the proportion of total support provided by that source. The resulting range is between 1,040 under the lowest set of assumptions, and 5,300 under the highest set. The best-guess assumptions Yield a range of $2,250-3,240$ postdoctoral trainees needed annually to satisfy demand in medical and veterinary schools.

TABLE 2.5 Estimated Number of Postdoctoral Research Trainees Needea to Meet Expected Demand for Clinical Faculty in Medical and Veterinary Schools Through 1990 Under Various Conditions

|  |  | Projected Through | 1990 |
| :--- | :--- | :--- | :--- |

a Assumes an attrition rate due to death and retirement of $1.5 \%$ per year. See AAMC (1981a).
$b$ Assumes high, middle, and low attrition rates of $5 \%, 4.5 \%$, and $4 \%$, respectively.
c Based on an independent anaiysis of demand in schools of veterinary medicine (NRC, 1982, p. 75).
d Accessions are defined as new hires or those who rejoin faculties from nonfaculty positions. Interfaculty transfers are not counted as accessions. Data on the percentage with postdoctoral research training were derived from newly hired faculty members only, which are $85 \%$ of total accessions. We are assuming that the same percentage applies to all accessions.

SOURCE: Table 2.4.

## DENTAL SCHOOL TRENDS

Most dental clinical research in this country is performed in dental schools by full-time faculty members in clinical departments. Over the past two years, the committee--assisted by its ad hoc Panel on Dental Research-has examined the status of dental clinical research and training. We have reviewed data collected by the American Dental Association (ADA) on the trends in faculty, enrollments, and financing of dental education since 1968. Then a model of the system was constructed -i. ${ }^{2}$ some projections of demand for dental clinical investigators through 1.990 wer? made. Herewith are the findings and conclusions of that examination and review. The detailed data may be found in Appendix Tables Al2-A20.

Number of Dental Schools (Figure 2.7 and Appendix Table A20)
Perhaps the first thing to note is that the number of dental schools grew slowly but steadily in the 1960s, then accelerated in the first half of the l970s before leveling off in the last half. Since 1979, there have been no new schools added to the total of 60. Moreover, one institution--Emory University School of Dentistry--has recently announced plans to discontinue $i$ ts predoctoral program.

All of the recent growth in number of dental schools over the past 17 years has been in the publicly controlled institutions. In 1968, the 50 dental schools were equally divided into 25 public and 25 private schools. Currently there are 35 public and 25 private schools. ${ }^{9}$

## Dental School Enrollments (Figure 2.8 and Appendix Table A20)

Total enrollment in dental schools reached a peak in FY 1981 at about 25,000 students and has since declined for three successive years to 23,600 in FY 1984. ${ }^{10}$ The decline has been ascribed to lower earnings expectation in the dental sector along with changes in student financial assistance that have made "...dental education a less attractive investment" (Brown and Hixson, 1984). The pattern of growth is somewhat similar to that of medical schools--accelerating in the 1960s and decelerating in the 1970s. The overall growth rate in enrollment from 1968-84 was over 2 percent per year, which is almost twice as fast as the growth in number of schools. Furthermore, enrollment continued to increase in 1980 and 1981 even though the number of schools was unchanged. Thus it is clear that dental schools have been able to expand class sizes readily in response to perceived need and financial incentives.

[^9]

FIGURE 2.7 Number of operational U.S. dental schoois, by contioi of institution, 1961-84. See Appendix Table Al2.


FIGURE 2.8 Enroliments in U.S. dental schools, by controi of institution, 1968-84, with projections to 1990. Includes predoctoral, advanced speciaity, and general purpose residency students. Tite committee expects enroliments to decline until 1988 and then level out to 1990 . See Appendix Table A12.

We expect dental enrollment to continue to decline until 1988 and then flatten out through 1990. Tne best guess is for an average annual decline of 2.8 percent per year between 1983 and 1988, with upper and lower limits of -1.3 percent and -4.3 percent per year respectively. After 1988, the market for dental practitioners is expected to improve, mainly due to growing demand for dental care by the elderly. mis is likely to have the effect of stabilizing the enrollment decline in dental schools.

Enrollment in public dental schools currently accounts for 57 percent of total enrollment, compared to 43 percent in private schools. This, of course, reflects the widening gap between the number of public and private schools. From 1961 through 1970, enrollment in private schools was higher than in public schools. But since 1970, public school enrollment has been greater and probably will continue to be for quite some time in view of the appreciable disparity in the number of schools in each category.

## Dental School Faculty (Appendix Table A21)

Despite the downcurn in dental school enrollments starting in 1982, clinical faculty in dental schools has remained stable at around 3,700 full-time members since 1981. ${ }^{11}$ In contrist $\because$. $\because$.t.ime basic science faculty in dental schools decline $\bar{\alpha}$ by. $\quad ;$ percent since 1982. The implication of these data is that funds acy $x y$ to maintain a level number of clinical faculty have come mainly from increases in Glinic revenue, tuition, $R$ and $D$ funds, and state and local government support. A discussion of these sources of revenue follows.

R anc; D Revenue (Table 2.3 and Appendix Table A22)
Dental school $R$ and $D$ revenue in constant dollars has been generally rising since 1968 although there have been some rather sharp drops--notably in FY 1969 and 1975-and some flat stretches. In recent years there have also been some steep increases-meal $R$ and $D$ increased by 14 percent in $E Y 1981$ and by another 3 percent in $F Y$ 1982. Prior to 1981, real $R$ and $D$ revenue had increased at an average annual rate of only 1 percent since 1968. Nevertheless, $R$ and $D$ funds in dental schools are relatively minor sources of revenue, accounting for only about 7 percent of total revenue in 1982 compared to 22 percent in medical schools.

[^10]The National Institute of Dental Research has formulated a 5-year planning budget to exploit the scientific opportunities described in its long-range research plan, "Challenges for the Eighties" (NIH, 1983c). Although that budget incorporates an annual increase of 8 percent in constant dollars for extramural research, most of which would be awarded to dental schools, the committee believes it realistic to project an average increase of 3 percent per yeai in dental school $R$ and $D$ revenue through 1990. Upper and lower limits are prajected at 6 and 0 percent respectively.

## Dental Clinic Revenue (Table 2.3 and Appendix Table A23)

In contrast to service income in medical schools, which stems largely from faculty practice plans, clinic revenue in dental schools is generated largely by students. Clinic revenue has had a dramatic growth pattern during the past decade and probably is one of the keys to understanding what has been happening in dental education during the 1970s. Since 1968, real clinic revenue has increased at a steady pace of better than 7 percent per year-much faster than the growth in real $R$ and $D$ revenue at less than 2 percent per year.

At the beginning of the 1970 decade, clinic revenue and $R$ and $D$ revenue in dental schools were both at about the same level of $\$ 16$ million per year in real terms. By 1983, clinic revenue at about $\$ 44$ million was double the $R$ and $D$ revenue of about $\$ 22$ millinn $:=2$ year. Both public and private dental schools have benefited from increased clinic revenue but the growth has been somewhat faster in public schools because of their higher rate of growth in predoctoral enrollment.

We are projecting clinic revenue to increase between 0 and 4 percent per year in constant dollars through 1990, with a best guess of 2 percent per year.

Tuition and Fees (Table 2.3 and Appendix Table $\hat{A} 24$ )
Another factor that has played a substantial role in dental school revenues since 1970 is tuition. In contrast to medi.iai schools, tuition in dental schools has been an important source of funds, and in the past 10 years has become the second largest revenue source behind state and local government fundis.

Tuition revenue increases in private dental schools have been especially sharp. In 1982, tuition revenue at 43 percent of total revenue in private schools was by far the largest single source of funds. In real terms it has increased at 8.3 percent per year in private schools and 6.9 percent per year in public schools since 1968.

Our projections are for continued increases of between 2 and 12 percent per year through 1990 , with a best guess of 7 percent per year.

## State and Local Government Revenues (Figure 2.3 and Appendix Table A25)

We may infer from the ADA reports and the data in Table 2.3 that state and local governments have always been the dominant source of support for dental schools. Clearly since 1972, this source of funds has taken on added importance as federal support has declined. In 1982, state and local government contributions made up nearly half of all dental school revenues, up from about 35 percent in 1972. During this same period, the federal government's share (excluding research funds) declined from 19 percent to less than 4 percent. Most of this decline is attributable to the elimination in 1982 of capitation grants--a program designed to encourage the expansion of enrollment in professional schools.

Modest increases are expected through 1990. Our best guess is for 2 percent per year real growth, with upper and lower limits of 4 and 2 percent per year, respectively.

Public schools, of course, rely more heavily on state and local government support than do private schools. In 1982, state and local governments contributed 64 percent of all public dental school revenue and only 15 percent of private dental school revenue.

Nonetheless, the combined federal, state, and local government contributions were still a smaller percentage of total revenue in 1982 than they were about 10 years ago. Dental schools have reacted to the declining government support by increasing tuition and clinic revenue. Medical school tuition has also increased rapidly but not nearly as fast as medical service income.

## Total Revenue (Figure 2.9 and Appendix Table A26)

The above sections describe the major revenue sources for U.S. dental schools. As a result of these trends, real total revenue per school grew at an average annual rate of 9.5 percent between 1968 and 1973. After 1973, the growth slowed to about 2 percent per year. As a result of the expected increases in most revenue components-especially tuition--the committee expects growth in total revenue to continue through 1990 at about 4 percent per year, with upper and lower limits on this estimate of 7 percent and 1 percent, respectively.

Average revenue in public dental schools has been consistently higher than in private schools. Similarly, the faculty/student ratio is higher in public schools--a fact that provides a basis for modeling academic demand as explained in the next section.


FIGURE 2.9 Totai revenue per school in U.S. dental schoois, by control of institution, 1968.83, with projections to 1990. See Appendix Table A18.

## DEMAND FOR CLINICAL FACULTY IN DENTAL SCHOOLS

Given the behavior patterns discussed above regarding the principal variables involved in dental education, the issue now becomes one of trying to determine how they relate to one another.

Recall that the purpose of thia analysis is to estimate the future demand for full-time clinical faculty members in dental schools-and ultimately to assess the need for training of dental clinical investigators. The methodology that has been applied to a corresponding analysis of medical schools involves the development of a conceptual and empirical model of the intertrlationstips among the variables. A similar approach will be applica bere--iby Eaculty, student ratio is specified to depend on total revenae per school. The relevant data from 1970-83 are shown in Fijure $\mathrm{A}, 16$.

$$
41
$$



FIGURE 2.10 Dental school clinical faculty/student ratio (CF/WS) vs. total revenue per dental school (T/S). The ratio is defined as follows: $\mathrm{CF}=$ full-time faculty in clinical departments of U.S. dental schools; WS $=4$ ycar weighted average of students, i.e., $(W S)_{t}=1 / 6\left(\mathrm{~S}_{\mathrm{t}}+2 \mathrm{~S}_{\mathrm{t}-1}+2 \mathrm{~S}_{\mathrm{t} \cdot 2}+\right.$ $S_{t-3}$ ), where $S_{t}=$ predoctoral, advanced specialty, and general purpose residency students in year $t$. Solid line represents a growth curve of the form: $\mathrm{Y}=(\mathrm{K}-\mathrm{C}) \exp \left(-\mathrm{e}^{\mathrm{a}-\mathrm{bx}}\right)+\mathrm{C}$ with paramsters $\mathrm{K}=0.17$, $C=0.116, a=5.388, b=1.204$. These were derived from 14 a nnual obsurvations, 1970-83. Sec Appendix Tables A12, A13, and A18.

As in other bioscience areas, the observations form a nonlinear pattern, suggesting that a constrained growth curve might provide an adequate fit to the data. A Gompertz-type curve has been fitted to the data and is shown as the solid line in Figure 2.10.12

Using this model and the panel's assumptions about growth rates through 1990, we may make estimates of demand for full-time clinical faculty in dental schools (Figure 2.11).


FIGURE 2.11 Full-time faculty in clinical departments of dental schools, by control of institution, 1969-84, with projections to 1990. See Appendix Table Al3.
${ }^{12}$ The curve has the following mathematical form:
$C F / W S=(K-C) \exp \left[-e^{a-b(T)}\right]+C$
where: $C F=$ full-time clinical faculty in U.S. dental schools WS = 4-yr. weighted average of enrollments, i.e., $W S_{t}=1 / 6\left(S_{t}+2 S_{t-1}+2 S_{t-2}+S_{t-3}\right)$ where: $S_{t}=$ predoctoral plus advanced specialty enrollments in year $t$, $T$ = total revenue per school in U.S. dental schools (1972 \$, millions). $a, b=$ parameters to be determined by the data. $K=$ asymptote $: C F / W S \rightarrow K$ as $T \geqslant i n f$. $C=$ scaling constant
Th is function provides a good fit to the 14 annual observations 1970-83, with $\mathrm{R}^{2}=0.95$. The dotted lines in Figure 2.10 represent the 95 percent confidence limits on the predicted values.

Under the panel's revenue assumptions, total revenue per school would grow between 1 percent and 7 percent per year between 1983 and 1990, with a best guess of 4 percent per year. Combining these estimates with the three assumptions about enrollment growth, we get nine combinations of assumptions to consider. The projections of faculty demand under each combination are shown in Table 2.6.

Under the combination of highest assumptions-I-A in Table 2.6--full-time clinical faculty would grow to 3,810 from its 1983 level of 3,786 which gives a practically negligible number of new positions due to expansing nf faculty. But attrition due to death and retirement would generate an estimated 60 positions and other attrition would create another 190 vacancies for a total demand of 250 per year.

Under the best guess set of assumptions-II-B in Table 2.6-faculty would decline slightly to about 3,550 by 1990. But attrition would create 190 positions per year.

In the worst case envisioned by the panel--III-C in Table 2.6-faculty would decline by about 90 positions per year, but attrition would create about 150 vacancies per year for a net demand of about 60 positions per year.

## POSTDOCTORAL TRAINING NEEDS FOR DENTA L SCHOOL CLINICAL FACULTY

The final step in this analysis of demand for dental clinical faculty members is to translate the projections derived above into recommended levels of training under NRSA programs. The procedure for this is to determine the size of the pool of trainees necessary to satisfy the projected demand using certain assumptions about how the training system works. The methodology is similar to that applied to medical schools but the parameter values used in the medical school analysis are probably inappropriate to apply to the dental training system. For example, there is justification for using an appreciably higher figure than 35 percent with respect to the annual average proportion of clinical dental faculty accessions with postdoctoral research training. One reason for a higher figure is the growing tendency for dental schools to restrict tenured and tenure-track appointments in clinical departments to individuals with a background of advanced education (specialty or general practice residency) and research training. In addition, any effort to build a capability to exploit the opportunities that have opened up in dental clinical investigation must start from a more fragile base of faculty research involvement than exists in medical schools. It is relevant in this connection that 57 percent of D.D.S. faculty in clinical departments reported a less than 10 percent involvement in research in academic year 1983-84 (AADS, 1985). The comparable portion of M.D. clinical faculty in 1982 was 37 percent (Herman and Singer, 1985).

Clinical specialty training has traditionally been interwoven with training for research for most dentists who subsequently enter careers in teaching and research. By contrast, a physician generally enters research training after completion of a standard residency. Since the residency offers the physician little or no opportunity for investigative experience, research training is often incorporated into

TABLE 2.6 Projected Growth in Dental School Clinical Faculty, 1983-90, Based on Projections of Dental School Enrollment and Total Revenue per School ${ }^{a}$

| Assumptions about <br> Dental Student <br> Enrollment (dental <br> students, general <br> purpose residency, and <br> advanced specialty <br> graduate students: <br> 23,587 in 1984) |  | Assumptions about Total Revenue per School (In constant 1972 dollars ${ }^{b}$ ) in Dental Schools ( $\$ 5.4$ million per school in 1983) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Will expand at about $7 \% / \mathbf{y r}$. to $\$ 8.7$ million per school in 1990 | II <br> Will expand at about $4 \% /$ yr. to $\$ 7.1$ million per school in 1990 | III <br> Will expand at about $1 \% /$ yr. to $\$ 5.8$ million per school in 1990 |
| A. Will decline to $\mathbf{2 2 , 3 8 0}$ students by 1990 | Expected size of clinical faculty in dental schools (CF) in 1990 Annual growth rate in CF from $\qquad$ 1983 to 1990 | $\begin{array}{r} 3,810 \\ \mathbf{0 . 0 9 \%} \\ \hline \end{array}$ | $\begin{array}{r} 3,760 \\ -0.08 \% \\ \hline \end{array}$ | $\begin{array}{r} 3.540 \\ -0.09 \% \\ \hline \end{array}$ |
|  | Average annual increment due to faculty expansion <br> Annual replacement needs due to: death and retirement ${ }^{c}$ other attrition ${ }^{d}$ | $\begin{array}{r} - \\ 60 \\ 190 \\ \hline \end{array}$ | $\begin{array}{r} 60 \\ 170 \\ \hline \end{array}$ | $\begin{array}{r} -30 \\ 50 \\ 110 \\ \hline \end{array}$ |
|  | Expected number of positions to become available annually on dental clinical faculties | 250 | 230 | 130 |
| B. Will decline to $\mathbf{2 1 , 0 5 0}$ students by 1990 | Expected size of clinical faculty in dental schools (CF) in 1990 Amual growth rate in CF from $\qquad$ 1983 to 1990 | $3,590$ <br> $-0.7 \%$ | $3,550$ <br> $-0.9 \%$ | 3,340 <br> $-1.8 \%$ |
|  | Average annual increment due to faculty expansion <br> Annual replacement needs due to: death and retirement ${ }^{c}$ other attrition ${ }^{d}$ | $\begin{array}{r} -30 \\ 60 \\ 180 \\ \hline \end{array}$ | $\begin{array}{r} -30 \\ 60 \\ 160 \\ \hline \end{array}$ | $\begin{array}{r} -60 \\ 50 \\ 110 \\ \hline \end{array}$ |
|  | Expected number of positions to become available annually on dental clinical faculties | 210 | 190 | 100 |
| C. Will decline to $\mathbf{1 9 , 7 8 0}$ students by 1990 | Expected size of clinical faculty in dental schools (CF) in 1990 Annual growth rate in CF from $\qquad$ 1983 to 1990 | $\begin{array}{r} 3,380 \\ -1,6 \% \\ \hline \end{array}$ | $3,340$ <br> $-1.8 \%$ | $3,150$ <br> $-2.6 \%$ |
|  | Average annual increment due to faculty expansion <br> Annual replacement needs due to: death anc retirement ${ }^{c}$ other attrition ${ }^{d}$ | $\begin{array}{r} -60 \\ 50 \\ 180 \\ \hline \end{array}$ | $\begin{array}{r} -60 \\ 50 \\ 160 \\ \hline \end{array}$ | $\begin{array}{r} -90 \\ 50 \\ 100 \\ \hline \end{array}$ |
|  | Expected number of positions to become available annually on dental clinical faculties | 170 | 150 | 60 |

${ }^{a}$ Faculty in this table is defined as a full-time appointment in a clinical department regardless of tenure status. These projections are based on the following relationship:
$\left.(C F / W S)_{t}=(0.054) \exp \left[-e^{5.3885-1.2044(T S}\right)_{t}\right]+0.116$, where $C F=$ size of clinical faculty in dental schools;
$W S=$ weighted average of last 4 years of enrollments, i.e., $(W S)_{t}=1 / 6\left(S_{t}+2 S_{t-1}+2 S_{t-2}+S_{t-3}\right)$,
where $S=$ dental students plus GPR and advanced specialty enrollments; $(T S)_{t}=$ total revenue per school in U.S. dental schools in year ( 1972 \$, millions). See Appendix Tables A12, A13, and A18.
${ }^{b}$ Deflated by the Implicit GNP Price Deflator, $1972=100.0$. See Appendix Table A7.
${ }^{\text {chased }}$ on an estimated replacement rate of $1.5 \%$ annually due to death and retirement. See AAMC (1981a).
dBased on high, middle, and low attrition rates of $5 \%, 4.5 \%$, and $4 \%$, respectively.
subspecialty fellowships. For the dentist, therefore, research training is pursued in a period equivalent to a residency, while for the physician it is most commonly a post-residency phenomenon.

Advanced education in one of the eight dental specialties takes place predominantly in dental schools, and to a much lesser extent in other institutions. By contrast, residency training to meet basic specialty board requirements for physicians is not focused on the university campus, but occurs primarily in teaching hospitals. The primary mechanism used by NIH for research training of dentists and physicians is the NRSA institutional training grant. Because of the link between research and specialty training for the dentist, it is far more likely to exceed the 3 -year limit on NRSA postdoctoral support and to require a waiver than is the case for M.D. research trainees.

Dentists are faced with a serious disincentive to pursue training as clinical investigators. Whereas the young physician receives a salary and benefits as a hospital resident and subspecialty fellow, similar payment for the newly graduated dentist is limited largely to hospital-based training in oral surgery or oral pathology. training in the other specialties rarely provides compensation and may indeed require tuition payment by the trainees. Consequently, NRSA training programs for dentists commonly include support for a clinical training component.

Although NIH repres:nts the largest single source of support for postdoctoral resejx el, raining of physicians, a multiplicity of private foundationi., "untary agencies, and industry-related organizations underwe.. : the preparation of physician-scientists. BY contrast, the NIDR is eesentially the only sponsor for the training of dental investigators through its NRSA postdoctoral programs and associated career development opportunities.

The parameters of a research training system for dental clinical investigators and the calculations leading to estimates of postdoctoral needs are laid out in Table 2.7.

Line 1 of Table 2.7 is a summary of the projections of demand for dental clinical faculty from the model.

Line 2 is an estimate of the contribution to demand generated by the need for clinical faculty in nondental institutions. This demand is estimated to be about 10 percent of dental school demand.

Line 3 shows total annual demand under each of three revenue conditions. In the best-guess case, we expect about 210 positions to be available each year through 1990.

Line 4 shows the number of accessions to dental school clinical faculties that should have some postdoctoral research training. since there are currently so few qualified dental clinical investigators, a strong effort should be made to bolster the research capability of dental schools. One way of doing this is to try to modify the system such that about $1 / 2$ of all newly hired faculty members in clinical departments of dental schools have some postdoctoral research training. Applying this factor, the best-guess case yields an estimate of 105 new hires needed each year with research training.

TABLE 2.7 Estimated Number of Dental Clinical Research Postdoctoral Trainees Needed to Meet Expected Demand for Dental Clinical Faculty Through 1990 Under Various Conditions

|  | Projected Through 1990 |  |  | Annual <br> Average 1981-84 |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Hilph } \\ \text { Estimate } \end{gathered}$ | Middle <br> Estimate | $\begin{gathered} \text { Low } \\ \text { Estimate } \end{gathered}$ |  |
| 1. Demand for full-time clinical facultyannual average: | 250 | $\underline{190}$ | 60 | 340 |
| a. due to expansion of faculty | - | -30 | -90 | 130 |
| b. due to death and retirement ${ }^{\text {a }}$ | 60 | 60 | 50 | 40 |
| c. due to other attrition ${ }^{\text {b }}$ | 190 | 160 | 100 | 170 |
| 2. Demand for clinical faculty outside of dental school ${ }^{\text {c }}$ | $\underline{25}$ | 20 | 19 | - |
| 3. Total annual accessions (expected demand) ${ }^{d}$ | $\underline{275}$ | 210 | 70 |  |
| 4. Total accessions with postdoctoral research training-annual average (assuming $1 / 2$ of all accessions have postdoctoral research training)d | 140 | 105 | 35 |  |
| 5. Size of dental clinical science postdoctoral pool-annual average Siz needed to meet academic d I assuming a 3 -year training p:a $\because$ nd portion of trainees st tal clinical faculty positic د. . |  |  |  |  |
| a. $80 \%$ <br> b. $70 \%$ | 520 600 | 400 450 | 130 150 |  |
| 6. Annual number of dental clinical science postdoctoral trainees to be supported under NRSA programs: |  |  |  | 124 |
| a. if $\mathbf{8 0 \%}$ of pool is supported under NRSA <br> b. if $\mathbf{9 0 \%}$ of pool is supported under NRSA | $420-480$ $470-540$ | $320-360$ $360-400$ | $100-120$ $120-130$ |  |

a Assumes an attrition rate due to death and retirement of $1.5 \%$ per year. See AAMC (1981a).
${ }^{b}$ Assumes high, middle, and low attrition rates of $5 \%, 4.5 \%$, and $4 \%$, respectively.
c In FY 1982 there were $\mathbf{1 , 6 8 6}$ students enrolled in residency programs (specialty and general practice) in nondental school institutions. These programs are usually taught by full-time program directors at those institutions, of which there were 309 in 1982. The demand for faculty generated by these programs is estimated to be about $10 \%$ of dental school demand.
${ }^{d}$ Accessions are defined as new hires or those who rejoin faculties from nonfaculty positions. Interfaculty transfers are not counted as accessions.

SOURCE: Table 2.6.

Line 5 gives the size of the dental postdoctoral research training pool needed to supply the necessary number of trained dental scientists assuming that the training period lasts three years and allowing for some attrition from the pool to nonacademic positions.

There is little, if any, support for dental research training available from sources other than the federal government. Therefore, line 6 calculates the number of trainees needed in NRSA programs assuming that these programs support 80 or 90 percent of the total pool of postdoctoral trainees in dental research. In the best-guess case, the range is betwoen 320 and 400 postdoctoral trainees.

SUMMARY
Projections of demand for full-time clinical faculty in medical, dental, and veterinary schools have been made through 1990, and then translated into numbers of clinical science postdoctoral trainees needed to satisfy this demand under specified conditions which define the training system. The committee's best estimates are as follows:

For clinical faculty in medical and veterinary schools: $\quad 2,250-3,240$
For clinical faculty in dental schools:
Annual Number of Clinical Sci. Postdoctoral Trainees Needed Under NRSA Programs

$$
2,250-3,240
$$

Total:

$$
2,570-3,640
$$

This spread of estimates is partly due to the difficulty inherent in making assumptions about the future levels of revenue, especially at a time when medical schools are facing possible dramatic changes brought on by demography, a potential physician surplus, and by efforts to curtail the growth in medicare/medicaid expenditures. And it is partly due to the fact that for the first time in more than 25 years, medical school enrollments are expected to decline while revenue is expected to continue to grow. The effect of these disparate trends on the size of clinical faculties cannot be determined with any specificity, and this uncertainty carries over into the assessment of training needs.

The committee's estimates of training needs through 1990 are somewhat higher than previous estimates published in its 1983 report. The principal reasons for this are, first, that we foresee faster growth in the financial factor in the demand model (total revenue) than we had projected through 1988. Second, we are recommending an adjustment to the training system for clinical scientists wherein the average length of the postdoctoral research training period is increased from two to two and one-half years. Third, we estimate that attrition due to death and retirement will begin to increase between 1983 and 1990 along with the age distribution of the faculty. Finally, our examination of the training system for dental researchers reveals that it is substantially different from the medical researchers training system, and in our opinion deserves special consideration.

## 3. Basic Biomedical Sciences


#### Abstract

A reduced number of new entrants to the supply of basic jiomedical scientists and increased employment in the industrial sector have combined to produce a better balanced market in 1983. Bachelor's degrees awarded in the biosciences have been falling steadily since 1976 , and graduate enrollment started declining in 1978. Ph.D. production fell in 1983, and the number of bioscientists serving on postdoctoral appointments in 2983 failed to increase For the first time in 10 years. Over half of the bioscience Ph.D.s in the labor force was employed in colleges and universities in 1983, but there has been little growth in this sector since 1981. The most rapid growth is taking place in the industrial sector where the emphasis on commercialization of recent developments in biotechnology and genetic engineering have increased the demand for biomedical scientists. Industrial employment of biomedical Ph.D.s increased by over 9 percent per year from 1981 to 1983. Industry continues to rely on academia to produce the scientists it needs, especially those with training in the latest techniques of modern bioscience.

The committee expects little net growth in the academic sector in the next few years, but the age structure of the bioscience Ph.D. labor force is such that retirement rates are expected to increase in the second half of the 1980 decade. Continued growth in the industrial sector is expected.


## INTRODUCTION AND $O^{-}$RVIEW

In previous reports issued since 197t: fins committee has cited the rapid growth in the number of biomedicai scientists serving on postdoctoral appointments as an indicator of insufficient opportunity for these individuals to move into more permanent academic positions. There was evidence that a posidoctoral holding pattern had developed during the 1970 s which resulted in many postdoctoral appointees remaining in that status for prolonged periods. As tenure-track faculty positions became more difficult to obtain, the postdoctoral trainees began moving into less traditional career paths such as nonfaculty research sicaff and other nontenure-track academic positions, and also into nonacademic sectors. Almost all of them either found employment in one of these situations or remained in
postdoctoral status and were primarily involved in $R$ and $D$ activities. The unemployment rate for biomedical Ph.D.s has not been more than 1.5 percent since 1972 .

The most recent data indicate that a better balance has been achieved between the inflow and outflow affecting the postdoctoral pool. Bionscience Ph.D. production and graduate enrollment have decreased while industrial employment has accelerated. This suggests another side of the postdoctoral issue--the vital role that they play in the nation's biomedical research effort. Many experts in the field have cited the importance of having this reservoir of hishly trained young scientists available to work on research projects waile at the same time receiving training and experience in the latest techniques, equipment, and methodology. Despite the declining growth in demand for faculty, the demand for postdoctoral trainees to participate :. research projects continues to be strong.

A postdoctoral appointment of at least 3 years has become $\therefore$ : a prerequisite for a faculty position at many universities. Furts .aore, a previous study has shown that biomedical Ph.D.s with postdoctoral training tend to be more successful and productive in their subsequent careers than those without such training (NRC, 1976a).

So, as pointed out by this committee in its 1979 report (NRC, 1975-81, p. 20). the issue of postdoctoral training is a complex one involving some important trade-offs. On the one hand, it is in the national interest to promote and encourage the availability of an ample supply of young scientists with extended training for biomedical research who contribute to a research effort in which government funding plays a major role. On the other hand, if the postdoctoral pool is large relative to the number of jobs expected to become available for biomedical scientists where their training can be fully utilized, then the resources devoted to their training will have beer partially misallocated and some career aspirations will not be realized. support for postdoctoral training under NRSA programs is a regulating mechanism for helping to achieve th proper balance between these points of view, which often pull in diffreent divections.

In this chapter, we present our assessment of the current market for basic biomedical scientists with Ph.D. degrees and the outlook for the next 5 years. Because postdoctoral research training is an integral part of the sustem under which these scientists are trained and abscread into the pool of established investigators and teachers, it becomes central to our analysis. We first describe the current market situation as reveaced by the most recent data and then outline our view of the prospectr for the remainder of the decade.

It should be noted $f={ }^{*}$ there is some overlap between the scientists we discuss in t? s shapter and those basic biomedical scientists who have appointments in clinical departments of medical schoois. The latter are included in the data of Chapter 2 as well as in this one. In 1982, about 5,800 out of about 7C, 000 basic biomedical Ph.D.s in the labor force had faculty appointinents in clinical departments of medical schools. This cuerlap in the data presents a logistical problem for our analyses but if not ikeiy to materially affect our findings and conclusions.

## CURRENT SUPPLY/DEMAND INDICATORS

The committee's assessment of the need for basic biomedical scientists and the level of training that should be provided by the federal government under NRSA progralis depends heavily on an analysis of the academic labor market, since that is the dominant sector both in terms of the number of bioscientists employed and the amount of federally-sponsored research performed.

In the committee's last report published in 1983, the latest available data for most of the factors that affect the supply an demand for biomedical scientists were for 1981. Additional survers have since provided data through 1983. The items that we monitor are those that our previous work has shown to determine the market for biomedical Ph.D.s--namely, degrees awarded, enrollments, postdoctore. appointments, $R$ and $D$ funding, and the distribution of biomedical Ph.D. labor force by employment sector. Recent trends in these variables from 1975 to 1983 are shoun in Table 3.1 and are summarized below. More detailed data may be found in Appendix Tables Bl-Bl8.

Although the current supply of well-trained biomedical scinntists appears adequate, most of the indicators of the flow of new entrants to the future supply have turned down. There is evidence that the size of the Ph.D. labor force in biomedical fields is fast approaching a peak and the prospects for the next few years are for little, if any, growth. The postdoctoral pool of biomedical scientists--which has acted to buffer the system since 1972--appears adequate for current needs. For the rest of the 1980s, we may see a gradual reduction in the size of the postdoctoral pool as Ph.D. production declines and more opportunities open up in the nonacademic sectors. This analysis is based on the following observations.

- Enrollments and degrees granted in the biomedical fields show declines from previous years. Generally, these declines continue a trend of several years but, in some cases, they constitute the first drop in a long series of increases.
- Bioscience Ph.D. production reached an all-time high in 1982 and dropped slightly in 19?3.
- Bachelor's degrees and first-year graduate enrollments in bioscience fields have been falling since 1976.
- The siz: , it the postdoctoral pool appears fo save dropped in 1983 for the first time in over 10 years.
- Academic employment of biomedical ph.n.s increased very slightly in 1983--industrial employment grew most rapidly.

These and other developments in the biomedical fields are discussed more fully in the sections below.



[^11]SOURCES: AAMC (1972-85, special tabulations of 4/8/82, 5/17/82, 6/15/83, 7/10/84, and 2/5/85): ADA (1969-84): AMA (1960.84); SIH (1966-84): XRC (1958-85. 1973-84): NSF (1973-85a, 1975-85); U.S. Department of Education (1948-81, 1948-84, 1959-79. 1961-84a, 1961-84h. 1973-82. 1974-83).

## Ph.D. Production (Table 3.1, line la and Figure 3.1)

The annual number of Ph.D. degrees awarded in the biomedical
fields, which has been increasing gradually since the mid-1970s, reached an all-time high in 1982 before dropping in 1983 to 3,775. As was pointed out in the committee's 1983 report (IOM, 1983b, pp. 64-65), the peak production in 1982 and subsequent decline was an expected result of corresponding patterns of first-year graduate enrollments 6 years earlier. These enrollments peaked around 1976 and have continued to decline each year since then through 1983 (Figure 3.1). If the past relationship between first-year graduate enrollments and Ph.D. production prevails, we would expect Ph.D. production to continue to decline for the rest of the 1980 decade at least.
of course the rate of decline is critically important, and at this point, we are not sure just how fast the drop will be. If Ph.D. production is in fact closely tied to first-year graduate enrollments, then the data would indicate a drop of about 3 percent per year for the next several years. This would bring the level of biomedical Ph.D. production in 1990 to about 3,050, which is below the 1970 level. Whether or not this would lead to serious shortages depends, of course, on what happens to the demand for biomedical Ph.D.s. The committee's estimate of demand in turn depends on what assumptions are made about trends in total graduate and undergraduate enrollments and $R$ and $D$ funding for the next few years. These assumptions and projections are presented in the Market Outlook section of this chapter.

## Postdoctoral Appointments (Table 3.1. line 1c and Figure 3.1)

The number of biomedical scientists serving on postdoctoral appointments apparently declined slightly in 1983 for the first time in over 10 years, perhaps as a consequence of the drop in Ph.D. production in that year.

Throughout the 1960s, the postdoctoral pool tracked quite closely with Ph.D. production. But in the 1970s, the postdoctoral pool continued to grow while Ph.D. production leveled off. The committee noted this disparity in its 1983 report (IOM, 1983b, p. 57) and presented evidence showing that it was due to slower absorption of postdoctoral trainees into more permanent jobs in the academic sector. The fact is that employment of bioscientists in the academic sector slowed dramatically in the mid-1970s after a long period of rapid expansion since 1960 (see Appendix Table B5). Between 1960 and 1973, academic employment of biomedical Ph.D.s increased by more than 9 percent per year on the average, but only at 4.5 percent per year between 1973 and 1981. This slowdown caused some pressure to build up in the system which has manifested itself by the bulge in the postrioctoral pool. Continued expansion of employment in the industrial sector is apparently helping to relieve some of that pressure.

About 31 percent of bioscience postdoctoral appointees in FY 1983 were foreign citizens, the same percentage as in FY 1982 and up slightly from the 28 percent in FY 1980 (NSF 1973-85a).


FIGURE 3.1 Ph.D. production, postdoctoral appointments, and first-year graduate enrollments in doctorate-granting institutions in basic biomedical science fields, 1960-83. See Appendix Tables B2 and B3.

Bachelor's Degrees (Table 3.1, line 1d and Figure 3.2)
After a long period of sustained growth from the early 1960 s through 1976, the number of bachelor's degrees granted in the biomedical sciences has declined for 6 straight years. The biosciences are not alone in this regard--many fields have experienced similar patterns, with the notable exceptions of business, engineering, and computer sciences. These occupationally-oriented fields have proven to be very popular with students lately. Business, and management in particular, has had exceptionally strong growth in B.A.s since the mid-1960s. Currently more than 200,000 business B.A.s are produced annually, far above the cecond most popular field, education.

The ratio of biomedical bachelor's degrees to total bachelor's degrees awarded annually has fallen to its lowest level since 1960 (Appendix Table B4). This has an ominous implication for future Ph.D. production and also affects our estimate of undergraduate enrollment in bioscience fields as explained in the next section.


FIGURE 3.2 Bachelor's degrees awarded in biomedical science fields compared to othes: fields, 1962-82. See Appendix Tables B3 and B4. Business and management and physical sciences degrees are from the U.S. Department of Education (1948-84).

Enrollments (Table 3.1, line 4 and Figure 3.3)
For purposes of this study, it is necessary to have an estimate of undergraduate enrollment in bioscience fields, mainly because such enrollment helps to determine the demand for bioscience Ph.D.s in the academic sector. Yet the U.S. Department of Education, whose surveys collect most of the country's data on enrollments and degrees, does not provide undergraduate enrollment figures by such detailed fields. Therefore, we have developed a procedure for estimating bioscience undergraduate enrollment from the ratio of bioscience ichelor's degrees to total bachelor's degrees $\left(B_{0} / B_{t}\right)$. This racio in year $t$ is multiplied by total undergraduate enrollment in year t-2 to provide an estimate of bioscience enrollment in year t-2.


FIGURE 3.3 Totai biomedical science undergraduate and graduate enroilments in colieges and universities, by control of institution, 1960-81, with projections to 1990. See Appendix Tabie BI.

As noted in the previous section, the ratio $B_{b} / B_{t}$ has been falling since 1976 , and so even though total undergraduate enrollment has increased almost without interruption since 1960 and reached an all-time high in 1983, estimated bioscience undergraduate enrollment has been declining since 1976. The latest estimate for 1981 is almost 1 percent below the 1980 level.

Since we cannot measure bioscience undergraduate enrollment directly, there is some uncertainty that our estimating procedure is detecting the trends accurately. Yet there is also some corroborating evidence from graduate enrollment to support our estimates. Graduate enrollment in bioscience fields (which is measured directly by the National Science Foundation) reflects the pattern shown by estimated bioscience undergraduate enrollment--it reached a peak in 1978 and has been falling steadily since then through 1983 (Table 3.1, line 4a).

Although enrollments in medical and dental schools have leveled out, as of 1983 they had not fallen (Table 3.1, line 4b) . But the 1983 increase over 1982 was only 16 students, and it is anticipated that 1984-85 data will show the first yearly decline in these enrollments in more than 20 years.

Overall, total graduate and undergraduate enrollment in bioscience fields, as best we can estimate it, reached an all-time high in 1976 and has declined steadily through 1981. This pattern is illustrated in Figure 3.3 along with the committee's projections through 1990.

## R and D Funding (Table 3.1, line 2 and Figure 3.4)

Biomedical science $R$ and $D$ expenditures at colleges and universities are generally following the pattern anticipated by the committee. These funds increased by 2 percent in 1983 after adjusting for inflation. The comnittee expects these funds to grow at about 1.5 percent per year in real terms through 1990 as shown in Figure 3.4.

NIH research grant expenditures rose substantially in 1983 after successive real declines in 1981 and 1982 (Table 3.1, line 2c).

Labor Force (Table 3.1, line 3)
The labor force of Ph.D.s employed in biomedical science ficlds totaled more than 71,000 in 1983. Slightly more than half of these scientists are employed in academic institutions, but there was almost no growth of this sector between 1981 and 1983. It would appear that declining bioscience enrollments and slowe growth in $R$ and $D$ expenditures are diminishing academic demand for biomedical scientists. Industrial employment of biomedical Ph.D.s is increasing rapidly but this sector is still small relative to the academic sector. The distribution of the labor force has shifted somewhat toward the industrial sector since $1975-$ it has increased from 13.2 percent of the biomedical Ph.D. labor force in 1975 to 16.5 percent in 1983. At the same time, academic employment has declined from 56 percent to about 52 percent of the labor force. The remaining sectors have generally retained their respective shares.


FIGURE 3.4 Biomedical science $R$ and D expenditures in colleges and universities, by control of institution, 1964-83, with projections to 1990 (1972 \$, millions). See Appendix Table B9.

Within the academic sector there is a rapid diffusion of new concepts and techniques from basic research to agriculture and clinical. disciplines. This transfer of knowledge has been facilitated by the large postdoctoral group of scientists through which new ideas and techniques are quite easily transmitted. Thus, there is widespread enthusiasm for the opportunities created by recent advances in this fast moving field of science.

## SURVEY OF BIOTECHNOLOGY FIRMS

In 1983, this committee collaborated with the congressional office of Technology Assessment in a joint effort to collect information about employment of biomedical scientists in the developing biotechnology industry. That survey of 265 firms obtained responses from 138 , of which 20 said they were not engaged in biotechnology as defined on the questionnaire (the application of novel biological strategies such as rDNA, cell fusion or immobilized cells or enzymes, for biochemical processing). The results--described more fully in the committee's 1983 report--showed that most of the firms were formed after 1977, and in 1983 employed about 12 biomedical Ph.D.s per firm. Jtal employment in the industry is difficult to estimate because there are no precise data on the actual number of biotechnology firms. The Office of Technology Assessment (OTA) estimates that about 5,000 scientists were employed by 219 biotechnology firms in 1983 (OTA, 1984). Probably half of these scientists were Ph.D.s.

This survey was repeated in 1985 as a joint effort of the committee and the American Society for Microbiology. A total of 336 potential biotechnology firms were contacted. Responses were received from 165 firms ( 50 percent) and 27 indicated that they were not engaged in biotechnology activities, leaving 141 usable responses. The questionnaire and a summary of responses are presented in Appendix $E$.

There are some signs that the formation of new firms has slowed from the rapid pace of the 1970 s. The peak was reached in 1981 when 26 of the respondents started operations in biotechnology (Figure 3.5). Since then there has been a pronounced fall off, with 17 firms starting in 1982 and only 4 each in 1983 and 1984. Although there appear to be more firms in the industry in 1985 than there were in 1983, we don't know the extent to which the apparent expansion is real or simply due to better identification of biotechnology firms.


FIGURE 3.5 Percentage distribution of the year of firms' initiation of operations in the biotechnology industry. Data are from the Committee/ASM survey, 1985.

As in 1983 , the most frequent area of application mentioncd by the 1985 respondents was human diagnostics, followed by pharmaceuticals and fine chemicals. Among the miscellaneous applications cited were vaccines, food products, and biocosmetics.

The 1985 results indicate a substantial increase in the number of scientists employed in the biotechnology industry since 1983 (Table 3.2) despite some well-publicized layoffs and consolidations. The 141 respondents to the 1985 survey reported employment of almost 6,000 scientists of which about 38 percent held Ph.D.s, 18 percent held master's degrees, and 44 percent held bachelor's degrees. The 141 respondent firms employed $2,266 \mathrm{Ph} . \mathrm{D}$. scientists in 1985 for an average of over 16 per firm, up from the 12 per firm reported in 1983. Based on a response rate of 50 percent, we estimate a total employment of about 12,000 scientists in the biotechnology industry in 1985, about 4,000-5,000 of which were Ph.D.s.

The top three specialties in terms of employment of Ph.D.s were recombinant DNA/molecular genetics, general biochemistry, and hybridomas/monoclonal antibodies (Table 3.2). These were also the top

TABLE 3.2 Biomedical Ph.D.s Employed by Biotechnology Firms Responding to Survey

| Employnent Specialties (listed in order of number of Ph.D.s employed) | Ph.D.s <br> Employed by 141 Responding Firms |  | Increase <br> Expected <br> in 18 <br> Months <br> \% | Number of Respondents Indicating a Shortage ${ }^{a}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | $\%$ |  | N | \% |
| 1. Recombinant DNA/Molecular Genetics | 465 | 20.5 | 26.0 | 26 | 13.8 |
| 2. Biochemistry, General | 286 | 12.6 | 16.1 | 9 | 4.8 |
| 3. Hybrifomas/Monoclonal Antibodies | 182 | 8.0 | 35.7 | 16 | 8.5 |
| 4. Other Biotechnology Specialtics | 144 | 6.4 | 23.5 | 18 | 9.6 |
| 5. Microbiology, General | 136 | 6.0 | 19.1 | 8 | 4.3 |
| 6. Analytic Biochemistry | 128 | 5.6 | 15.6 | 6 | 3.2 |
| 7. Enzymology/Immolilized Systems | 112 | 4.9 | 23.2 | 11 | 5.9 |
| 8. Cell Culture | 110 | 4.9 | 16.3 | 10 | 5.3 |
| 9. Bioprocess Engineering | 106 | 4.7 | 25.5 | 22 | 11.7 |
| 10. Cell Biology/Physiology | 98 | 4.3 | 20.4 | 5 | 2.7 |
| 11. Toxicology | 77 | 3.4 | 10.4 | 3 | 1.6 |
| 12. Pharmacology | 67 | 3.0 | 29.9 | 3 | 1.6 |
| 13. Industrial Microbiology | 65 | 2.9 | 27.7 | 13 | 6.9 |
| 14. Unknown Specialty | 59 | 2.6 | 10.2 | - | - |
| 15. Plant Biology/Physiology | 54 | 2.4 | 29.4 | 9 | 4.8 |
| 16. CTassical Genetics | 50 | 2.2 | 8.1. | 7 | 3.7 |
| 17. Plant Molecule: Biology | 43 | 1.9 | 41.9 | 10 | 5.3 |
| 18. Gene Synthesis | 40 | 1.8 | 27.5 | 3 | 1.6 |
| 19. A nimal Reproduction/ Embryotransplantation | 18 | 0.8 | 16.7 | 3 | 1.6 |
| 20. Physiology | 15 | 0.7 | 46.7 | 3 | 1.6 |
| 21. Cell Fusion | 11 | 0.5 | 18.1 | 3 | 1.6 |
| TOTAL | 2,266 | 100.0 | 23.2 | 188 | 100.0 |

a Each respondent could indicate multiple shortage categories. Therefore, the number of responses in this column total more than the 83 firms reporting a shortage.

SOURCE: Committee/ASM Survey of Biotechnology Firms (1985).
three in 1983. However, the rankings of the remaining specialties have shifted somewhat since 1983. Those that have 1.ved p in rank are other biotechnology specialties (from 8th to 4eh ); anc". A : biochemistry (from loth to 6th); cell biology/physiology (fror ifti- to: 10th); and toxicology (from l3th to llth).

Among the specialties that have moved down in rank are general microbiology (from 4th to 5th); enzymology/immobilized systems (from 5th to 7th) ; and plant molecular biology (from l2th to l7th).

The respondent firms expect to increase their staff of ph.D.s by more than 23 percent over the next 18 months, down from the 39 percent increase that was expected in the 1983 survey. Large increases are expected in the specialties of plant molecular biology and hybridomas/monoclonal antibodies.

From firms responding to both the 1983 and the 1985 surveys, it is possible to compare their actual hiring experience with their expectations. There were 48 such firms, and in 1983 they expected to increase their staff of Ph.D.s by over 42 percent. The actual increase was just under 20 percent.

## Shortages of Specialists

More firms reported shortages of specialists in 1985 than in 1983. Almost 47 percent of the respondents said there were shortages of Ph.D.s in one or more biotechnology specialties in 1985. In 1983, only about one-third of the respondents indicated shortages of Ph.D.s. The most frequently cited shortage category in 1985 was recomb: rant DNA/molecular genetics which moved up from second place in 1983 (Table 3.2). Bioprocess engineering was the second most frequently cited shortage category in 1985, followed by the category of other biotechnology specialties, within which were mentioned organic chemistry, immunodiagnostics, fermentation, microbial physiology, pharmaceutics, and teratology.

Some respondents submitted additional comments on the question of shortages. A sampling of these follows:
"There are near zero plant molecular biologists that are really qualified. All of ours are retreaded mammalian or bacterial molecular biologists. There are near zero plant tissue culture people who are qualified. We import."

A firm engaged in plant agriculture.
"In general, I don't believe a good, broadly trained microbiologist/biochemist can be placed (nor should they be) in the "Specialties" category. It takes training beyond the B.S. level to acquire a specialty, whether it be graduate education or on-the-job experience.

There is definitely a shortage of what I consider to be Ph.D. industrial microbiologists--i.e., sound microbiology background, strong in microbial physiology and some biochemical engineering savvy."

A firm involved in human diagnostics and enzyme manufacturing.
"We are a developmental company just emerging as a commerci-l enterprise. I don't believa we can help you in your dena fi estinates; we share, howerir, a sense that growth will ocou: and will be rapid.

So fas: people have not been our problem; money has."
A monoclonal antibody firm.
"?he areas in which the plant biotechnology industry is experiencing the most difficulty in recruiting personnel is in the area of plant genetics. There is a need for scientists with a background in clinical plant genetics and breeding combined with a secondary discspline; i.e., tissue c:ulture, cell biology, molecular biology, recombinant DNA technology, etc."

A medium size firm engaged in fine :.:iemicals and plant agriculture.

> "We are not experiencing shortages and do not anticipate staff expansion in near future. We will probably recruit about 6 Ph.D.s and $6 \mathrm{M} . \mathrm{S} . / \mathrm{B} . \mathrm{S}$. level staff--but specialties are not known at this time."
> A large firm engaged in pharmaceuticals, animal growth hormones, human diagnostics and therapeutics.

The biotechnology industry continues to look to the academic sector as the principal supplier of trained scientists. In both the 1983 and 1985 surveys, most of the respondent firms with plans to increase their staffs over the next 18 months expected to do so by hiring from academia rather than from industry or by retraining current staff.

## THE MARKET OUTLOOK

For its analysis of the academic sector, the committee has relied on a model which estimates academic demand for biomedical Ph.D.s on the basis of enrollments and $R$ and $D$ expenditures in colleges and universities. This follows from the knowledge that the demand for bioscience Ph.D.s in colleges and universities derives mainly from their teaching and research activities. The $\because$.itiable data, covering the per iod from 1960 to 1983, sugger that academ: employment is related linearly to enrollments and onlinearly to $R$ and $D$ expenditures. Empirical evidence also shows a generally increasing ratio of faculty to enrollment in biomedical. fields.

These observations have led to a model used in past reports in which the faculty/student ratio is specified to depend on $R$ and $D$ expenditures. But there are now indications that academic institutions are finding ways to compensate partially for declining enrollments which might alter previous relationships between faculty and students.

The main issue is the extent to which the future size of biomedical faculties will depend on enrollments, as we have assumed in past reports. There are various views on this issue ranging from one extreme which holds that faculty size is completely independent of enrollments, to another position which states that faculty size depends on enrollments as well as financial factors such as the availability of $R$ and $D$ funds. If enrollment growth is related to faculty growth, the relationship is likely to be a long-term one in that faculty size generally will not resul: from year-to-year changes in enrollment.

In between these extremes is the view that graduate and undergraduate enrollments may have different impacts on faculty size in the biomedical fields. Since graduate education is more facultyintensive than undergraduate education, changes in graduate enrollment may have a greater effect on faculty size than would corresponding changes in undergraduate enrollment. The empirical evidence on the relationship between faculty size and enrollments favors the latter point of view. Faculti and undergraduate enrollments rose concurrently up to 1975, but from that point on they diverged--faculty continued to increase while undergraduate enrollments decreased (Figure 3.6a). The overall correlation between them from 1962 to 1981 is 0.898.

On the other hand, faculty and graduate enrollmits are highly correlated throughout the period ( $\mathrm{r}=0.998$, see Figure 3.6b). With only 10 observations, these two correlation values are not significantly different in a statistical sense, but the pattern shown by the time series suggests that graduate enrollments will provide a better fit as more data become available.

It is understood, of course, that correlation does not prove causation. These high correlation values merely indicate the relative strengths of the relationships over the period covered by the data.

The data appear co lend support to the proposition that biomedical Ph.D. faculty size might be more strongly related to graduate than to undergraduate enrollments. If that is the case, then a modification to our model is in order. One possibility is to give more weight to graduate students in the denominator of the faculty/student ratio. A weighting factor of three for graduate enrollments seens a reasonable approximation under the assumption that a graduate student requires three times as much faculty time as an undergraduace student. Applying this factor results in the pattern of points shown in Figure 3.7. The pattern is nonlinear and we assume that a growth curve of the Gompertz type is applicable. Thus, we have the following description of our revised model for academic demand for biomedical Ph.D.s:

$$
\begin{aligned}
& F / W S=(K-C) \exp \left(-e^{a-b M}\right)+C \\
& \text { where: } F=\text { Ph.D.s employed by academic institutions in biomedical } \\
& \text { fields (excluding postdoctoral trainees) } \\
& \text { WS }=0.25 \text { US }+0.75 \mathrm{GS} \\
& \text { US = 3-yr. moving average of undergraduate } \\
& \text { enrollments }=1 / 3\left(U_{t}+U_{t-1}+U_{t-2}\right) \\
& \text { GS }=3-\mathrm{yr} \text {. moving average of graduate } \\
& \text { enrollments }=1 / 3\left(G_{t}+G_{t-1}+G_{t-2}\right) \\
& M=3-y r \text {. weighted average of } R \text { and } D \text { expenditures } \\
& \text { i.e. } M=1 / 4\left(R D_{t}+2 R D_{t-1}+R D_{t-2}\right) \\
& K=\text { asymptote: i.e., } F / K S \rightarrow K \text { as } M \rightarrow \text { inf. } \\
& \mathrm{C}=\text { scaling constant } \\
& a, b=\text { parameters. }
\end{aligned}
$$



FIGURE 3.6a Biomedical science Ph.D. faculty (F) vs. biomedical undergraduate enrollments (U). Based on 11 annual observations, 1960.81. See Appendix Tables Bl and B5.


FIGURE 3.6b Biomedical science Ph.D. faculty (F) vs. biomedical graduate enrollments (G). Based on 12 annual observations, 1960.83. See Appendix Tables B1 and B5.


FIGURE 3.7 Biomedical Ph.D. facuity/student rat.o (F/WS) vs. bicenedical $R$ and $D$ expenditures in colleges and universities (M). The F/WS ratio is defined as the number of acadenically employed bioscience Ph.D.s relative to a weighted average of bioscience graduate and undergraduate enreilments (WS), whe.e WS $=0.25(\mathrm{US})+0.75(G S)$, and $(U S)_{t}=3$-year moving average of undergraduate enrollments $=i / 3\left(U_{t}+U_{t-1}+U_{t-2}\right)$, and $(G S)_{t}=3$-year moving average of graduate enroilments $=$ $1 / 3\left(G_{t}+G_{t-1}+G_{t-2}\right)$. $M$ is a 3 -year weighted average of $R$ and $D$ expenditures, $M_{t}=i / 4\left(R_{t}+\right.$ $\left.2 R_{t-1}+R_{t-2}\right)$. Solid line represents a growth curve of the form $Y=(K-C) \exp \left(-e^{a-h x}\right)+C$ fitted to the data for 1962-81. Broken lines represent $95 \%$ confidence intervals on the estimated curve. See Appendix Tables BI, B5, and B9.

Fitting this model to the data from 1962-81 yields the following parameter estimates: $K=0.5, C=0.105, a=2.0127, b=0.0011144$. $\mathrm{R}^{2}=0.9708$, inflection point at $M=\$ 1,806$ (millions).

Projections of Academic Demand for Biomedical Ph.D.s
The committee's expected growth in enrollments and $R$ and $D$ expenditures in constant dollars through 1990 are outlined below:

Total bioscience enrollments
Bioscience $R$ and $D$ expenditures in colleges \& universities

| High | Middle | LOW |
| :---: | :---: | :---: |
| $1 \% / \mathrm{Yr}$ | $-0.5 \% / \mathrm{yr}$ | $-2 \% / \mathrm{Yr}$. |
| $3 \% / \mathrm{Yr}$. | $1.5 \% / \mathrm{Yr}$. | 0 |

Applying these growth rates to the latest data, we derive the 1990 levels under the above assumptions:

| 俋 | High | Middle | Low |
| :---: | :---: | :---: | :---: |
| ```S = total bioscience enrollments (492,900 in 1981)``` | 523,180 | 471,160 | 423,630 |
| US $=3-y r$. moving average of undergraduate enrollments (369,100 in 1981) | 384,300 | 346,080 | 311,170 |
| GS = 3-yr. moving average of graduate enrollments (130,800 in 1983) | 140,250 | 126,300 | 113,560 |
| $R D=$ bioscience $R$ and $D$ expenditures ( $\$ 1,514 \mathrm{mil}$. in 1982) | \$1,890 | \$1,705 | \$1,536 |
| $\begin{aligned} M= & 3 y r . \text { weighted average of } R \text { and } D \\ & (\$ 1,477 \text { mil. in } 1982) \end{aligned}$ | \$1,835 | \$1,680 | *.4.536 |
| $\begin{aligned} \text { WS }= & 0.25 \text { US }+0.75 \text { GS } \\ & (189.600 \text { in 1981) } \end{aligned}$ | 199,274 | 187,160 | 166,313 |

Using these projections as input to the model, we num derive estimates of the annual number of faculty positions expected to become available each year during the period 1983-90 from expansion and attrition due to death, retirement, and other causes (field-switching and job changes). First we estimate demand created by expansion of faculty (Figure 3.8). To that we add demand cre:sted by attrition. Our attrition estimates are based on data from the Survey of Doctorate Recipients conducted every 2 years by the ofsice of Scierstific and Engineering Personnel of the National Researcil Council (Table 3.3), augmented by a detailed study of faculty atirition rates by the committee on Continuity in Academic Research Performance (NRC, 1979b). Attrition rates shown in Table 3.3 are 6 percent per year for all causes in the 1981-83 period. This is up sharply from the 4.1 percent rate of the 1979-81 period (IOM, 1983b, p. 77).

Most college and university faculties expanded rapidly in the l960s to accommodate the surge in enrollments. Growth during the 1970 s and 1980 s has been slower. As a result, Eaculty age distributions have shifted upward. In the biosciences, the proportion of academically employed Ph.D.s over age 60 has increased from 6.7 percent in 1977 to 8.6 percent in 1983 (see Appendix Table Bl8). Our projections indicate that this proportion will be over 12 percent by 1991. One implication of this trend is that faculty attrition rates will be higner in the late l980s.

For projections to 1990, attrition of academically employed Ph.D.s is estimated at 1.5 percent per year due to death and retirement. In


FIGUPE 3.8 Ph.D.s employed in the institution, 1960-83, with projection:
: edical sciences at colleges and universities, by control of :90. See Appendix Table B5.
the case of attrition due to other causes, we use high, middle, and low estimates of 4 percent, 3.5 percent, and 3 percent, respectively. ${ }^{1}$

These computations are shown in Table 3.4. The three assumptions about enrollment growth together with the three assumptions about $R$ and $D$ expenditures give nine combinations of assumptions to be used as input to the model.

Under the most optimistic assumptions, bioscience R and D expenditures at academic institutions would grow by 3 percent per year through 1990 (assumption I of Table 3.4), driving the $\mathrm{F} / \mathrm{WS}$ ratio to 0.254 . $^{2}$

[^12]TABLE 3.3 Inflows and Outflows from Academic Employment for Biomedical Science Ph.D.s, 1981-83
I. Average Annual Attrition from Academic Employment in the Biomedical Sciences 1981-83

1. Total biomedical Ph.D.s employed in acadenia in 1981: 36,482
2. Leaving academic employment in the biomedical sciences each year to:

|  | N | \% of Academic <br> Employment |
| :--- | :---: | :---: |
|  | 904 | 2.5 |
| a. nonacaciemic sectors | 152 | 0.4 |
| b. postdoctoral appointments | 432 | 1.2 |
| c. death and retirement | 212 | 0.6 |
| d. unemployed | $\underline{462}$ | $\underline{1.3}$ |
| c. other fieldsa | 2,162 | 6.0 |

II. A verage Annual Accessions to Academic Eimployment in the Biomedical Sciencrs 1981.83

1. Total biomedical Ph.D.s employed in academia in 1983: 36,963
2. Entering academic employment in the biomedical sciences each year from:
a. nonacademic sectors

| N | \% of Total <br> Accessions |
| ---: | :---: |
|  | 21.9 |
| 1,197 | 49.8 |
| 110 | 4.6 |
| $2,40 \mathrm{~B}$ | $\underline{23.7}$ |
|  | 100.0 |

III. Balancing: 1981 academic employment - attritinn + accessic:ls $=1983$ acadas: : r:un! $\cdot$ ment

$$
36,482-2(2,162)+2(2,403)=36,964 c
$$

 from biomedical fields to other fields.
${ }^{b}$ Based on postdoctoral plans of Ph.D. recipients, it is eitintated that $70 \%$ of the. : $\quad$ h.D. cohorts took a postdoctoral appointment before taking an academic position.
c Does not agree with line II. 1 because of rounding.
SOURCES: National Res : , Wouncil (1958-85, 1973-84).
'
We project academic demand by using the most optimistic smate of enrollment growth--1 percent per year (assumption A in Table 3.4)--together with the estimated $E / W S$ ratio. This produces in upper estimate of faculty size of 54,700 bioscience Pr.D.s in 1990 , for a faculty growth rate of 5.7 percent per year. About $\because, 530$ positions per year would be created by faculty expansion, 690 per year would be generated by attrition due to death and retirement, and 1,830 per year would be generated by other attrition. The total number of academic positions that would become available each year under these high growth conditions is 5,050.

TABLE 3.4 Projected Growtin in Biomedical Science Ph.D. Faculty, 1983-90, Based on Projections of Enrollment and $R$ and D Expenditures ${ }^{a}$

| Assumptions about Graduate and Undergraduate Enrollments in the Biomedical Sciences and Medical and Dental Schools (493,000 students in 1981) |  | Assumptions about Real R\&D Expenditures (in constant 1972 dollars ${ }^{\text {b }}$ ) in the Biomedical Ncientes in Colleges and Universities (\$1.5 billiori in 1982) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Will grow at $3 \%$ year tu $\$ 1.9$ billion in 1990 | II <br> Will grow at 1.5\%/year to \$1.7 $\qquad$ | III <br> Will remain at current level (\$1.5 billion) through 1990 |
| A. Will grow at $\mathbf{1 \%} / \mathrm{yr}$., reaching 523,000 students by 1990 | Expected size of biomediral lih.D. faculty ( $F$ ) in 1990 <br> Annual growth rate in F from $1983 \text { to } 1990$ | $\begin{array}{r}54,700 \\ 5.7 \% \\ \hline\end{array}$ | 45,800 $3.1 \%$ | 38,900 <br> $0.7 \%$ |
|  | Average annual increment due to faculty expansion <br> Annual replacement needs due to: death and retirement ${ }^{c}$ other attrition ${ }^{\text {d }}$ | $\begin{array}{r} 2,530 \\ 690 \\ 1,830 \\ \hline \end{array}$ | $\begin{array}{r} 1,270 \\ \\ 620 \\ 1,450 \\ \hline \end{array}$ | $\begin{array}{r} 270 \\ \\ 570 \\ 1,140 \\ \hline \end{array}$ |
|  | Expected number of academic positions to become available annually for biomedical Ph.D.s | 5,050 | 3.340 | 1,980 |
| B. Will decline by $0.5 \% / \mathrm{yr}$. to 471,000 students by 1990 | $\qquad$ <br> Expected size of biomedical Ph.D. faculty ( F ) in 1990 <br> Annual growth rate in $\mathbf{F}$ frum 1983 to 1990 | 50,000 $4.4 \%$ | 41,904 $1.8 \%$ | $\begin{array}{r} 35,500 \\ -0.6 \% \\ \hline \end{array}$ |
|  | Average annual increment due to faculty expansion <br> Annual replacement needs due to: death and retirement ${ }^{\boldsymbol{c}}$ other sttrition ${ }^{\text {d }}$ | $\begin{array}{r} 1,860 \\ 650 \\ 1,740 \\ \hline \end{array}$ | $\begin{array}{r} 700 \\ \\ 590 \\ \mathbf{1}, 380 \\ \hline \end{array}$ | $\begin{array}{r} -200 \\ 5.40 \\ 1,490 \\ \hline \end{array}$ |
|  | Expected number of acadenic positions tu become available annually for biomedical Pb.D.s | 4,250 | 2.670 | 1,4*) |
| C. Will decline by $\mathbf{2 \%} / \mathbf{y r}$. to 424,000 students by 1990 | Expecter si: of hiomedical Ph.D. faculty ( $\boldsymbol{F}^{\circ}$ ) in 1990 <br> Annual growth rate in $F$ from 1983 to 1990 $\qquad$ | 45,600 <br> $3.0 \%$ | 38,200 <br> $0.5 \%$ | $\begin{array}{r} 32 \% \\ -1.8 \% \\ \hline \end{array}$ |
|  | Average annual increment due to faculty expansion <br> Annual replacement needs due to: death and retiremente other attrition ${ }^{d}$ | $\begin{array}{r} 1,240 \\ 620 \\ 1,650 \\ \hline \end{array}$ | $\begin{array}{r} 180 \\ \\ 560 \\ 1,320 \\ \hline \end{array}$ | $\begin{array}{r} -650 \\ \\ 520 \\ 1,040 \\ \hline \end{array}$ |
|  | Expected number of academic positions to become available annually for biomedical Ph.D.s | 3,510 | 2,060 | 920 |

a Faculty is defined in this table as all academically employed Ph.D.s in biomedical fields, excluding postdoctoral appointees. These projections are based on the following relationship:
$(F / W]_{1}=0.395[\exp (-\exp (2.013-0.001114 M)]+0.05$, where $F=$ faculty; WS $=$ weighted average uf last 3 years of enrol..nents, i.e., $(W S)_{t}=0.25(U S)_{1}+0.75(G S)_{1}$, where $(U S)_{t}=3$-year moving average of bioscience undergraduate enrollments and $(G S)_{t}=3$-year moving average of bioscience graduate enrollments; $M=$ weighted average of last 3 years of biomedical science $R$ and $D$ expenditures in colleges and universities, i.e., $M_{1}=1 / 1\left(R_{1}+2 l_{1-1}+R_{1-2}\right)$. See Appendix Tables B1, B6, and B9.
${ }^{\text {b }}$ Deflated by the Implicit UNP Price Deflator, $1972=100.0$. See Appendix Table B7.
${ }^{c}$ Based on an estimated replacement rate of $1.5 \%$ annually due to death and retirement.
${ }^{d}$ Based on high, middle, and low attrition rates of $\mathbf{4 \%}, 3.5 \%$, and $3 \%$, respectively.

Under the middle or best-guess assumptions (II-B in Table 3.4), bioscience $R$ anc $D$ expenditures at academic institutions would grow by 1.5 percent per year through 1990--yielding an $F / W S$ ratio of $0.230--$ and bioscience enrollment would decline by 0.5 percent per year to 471,000 students by 1990. The best estimate of bioscience Ph.D. faculty size under these assumptions is 41,900 , an increase of 700 positions or 1.8 percent per year over the 1983 level. Attrition would add another 1,970 positions to give a total annual academic demand of about 2,670 positions.

Under the low growth assumptions (III-C in Table 3.4), bioscience $R$ and $D$ expenditures at academic institutions would remain at the 1982 level through 1990 and consequently the bioscience F/WS ratio would also remain at the 1982 level of 0.207 . $^{3}$ Bioscience enrollment would decline by 2 percent per year, yielding $a$ Ph.D. faculty size in 1990 of 32,400 . That represents a drop of 650 positions per year, but attrition would add 1,560 , for a net demand of 920 per year.

## ESTIMATING PREDOCTORAL AND POSTDOCTORAL SUPPORT LEVELS UNDER NRSA PROGRAMS

Having obtained an estimate of the size of tise academic market for biomedical Ph.D.s through 1990, we are now in a position to assess the level of predoctoral and postdoctoral training needed to satisfy that demand. For this, we must consider how the system works at several crucial stases of the process by which biomedical scientists are trained and absorbed into career positions.

## Postdoct oral Training Levels

The features of the postdoctoral training system which must be consjdered in addition to the projections of faculty growth are as follcus:

1. the number of accessions to facillty positions who have (or should have) postdootorai. research training,
2. the appropriate length of the postdoctoral research training period,
3. the proportion of individuals in the postdoctoral research training pipeline who are expected to choose academic careers,
4. the proportion of support to the total pool of postdoctoral reseazch trainees that should be provided by the federal qovernment.
[^13]It will be noted that some of these features reflect decisions bi individuals regarding career choice, and in that sense they are independent of the system. However, there are other features--such as the proportion of the total support for the postdoctoral pool that should be assumed by the federal government--that can be controlled by policy and program decisions.

Using the projections of academic demand derived in Table 3.4 and the same set of conditions specified in the 1981 and 1983 reports, we calculate in Table 3.5 the range of basic biomedical science postdoctoral trainees that should be supported by NRSA programs under the specified conditions.

Line 1 of Table 3.5 is a summary of the projections of academic demand for the extreme cases and the best-guess estimate derived in Table 3.4.

Line 2 shows the number of academic positions to be filled by individuals with postdoctoral research training experience. From the data on inflows and outflows from academic employment in the biosciences between 1981 and 1983 shown in Table 3.3, we estimate that 70 percent of all vacancies will be filled by former postdoctoral trainees. In the best-guess case, this number is estimated to be 1,870 per year between 1983 and 1990.

Line 3 indicates the size of the biomedical postdoctoral pool required to supply the necessary number of individuals with postdoctoral training under certain assumptions about the length of the postdoctoral training period and the proportion of the pool seeking academic employment. Currently, bioscience Fh.D.s are typically spending about 3 years in postdoctoral appointments, up from 2 years in the early l970s.

If the appropriate length of postdoctoral training is assumed to be 3 years, then the pool size needed to produce 1,870 trained scientists each year is three times 1,870 or 5,610 . Further, if 60 percent of the trainees seek academic appointments after completing their training, then the necessary pool size must be 9,350.

Line 4 shows the estimated number of biomedical science postdoctoral trainees that should be supposted annually by NRSA programs under different assumptions about the proportion of total support provided by that source. The resulting range is between 1,100 under the lowest set of assumptions, and 5,890 under the highest set. I'he best-guess assumptions yield a range of 3,200-4;670 postdoctoral trainees.

## Predoctoral Training Levels

A similar procedure can be used to estimate the level of predoctoral training to be supplied under NRSA programs. Starting with the number of postdoctoral trainees needed under the most likely projections (Table 3.5, line 3-middle estimate), we may determine in turn the number of Ph.D.s to be produced each year, the level of graduate enrollments needed, and finally the number of predoctoral trainees that should be in the pipeline. The calculations are shown in Table 3.6. They depend on certain parameters that describe how the

TABLE 3.5 Estimated Number of Basic Biomedical Science Postdoctoral Trainees Needed to Meet Expected Academic Demand Through 1990 Under Various Conditions

|  | Projected 1983-90 |  |  | Annual Average 1981-83 |
| :---: | :---: | :---: | :---: | :---: |
|  | High Estimate | Middle Estimate | Low Estimate |  |
| 1. Academic demand for biomedical Ph.D.s-annual average: | 5,050 | $\underline{\mathbf{2 , 6 7 0}}$ | 920 | $\underline{\mathbf{2 , 4 0 0}}$ |
| a. due to expansion of faculty | 2,530 | 700 | -640 | 240 |
| $b$ b. due to death and retirement ${ }^{\text {a }}$ | 690 | 590 | 520 | 430 |
| c. due to other attrition ${ }^{\text {b }}$ | 1,830 | 1,380 | 1,040 | 1,730 |
| 2. Total accession with postdoctoral research trainingannual average (assuming $\mathbf{7 0 \%}$ of all accessions have postdoctoral research training) | 3,535 | 1,870 | 640 | $\underline{1,200-1,600^{\text {c }}}$ |
| 3. Size of biomedical postdoctorr wol-annual average Size needed to meet academic $\mathbf{~ c e m a n d ~ a s s u m i n g ~ a ~} 3$-yr. training period and portion of trainees seeking academic pos:tions is: |  |  |  | 7,920 |
| a. $60 \%$ | 11,780 | 9,350 | 3,200 |  |
| b. $70 \%$ | 10,100 | 8,010 | 2,740 |  |
| 4. Annual number of biomedical postdoctoral trainees to be supported under NRSA programs: |  |  |  | 2,855 (1981-82) |
| a. If $\mathbf{4 0 \%}$ of pool is supported under NSRA | 4,040-4,710 | 3,200-3,740 | 1,100-1,280 |  |
| b. If $\mathbf{5 0 \%}$ of pool is supported under NSRA | 5,050-5,890 | 4,000-4,670 | 1,370-1,600 |  |

a Assumes an attrition rate due to death and retirement of $1.5 \%$ per year.
${ }^{b}$ Assumes replacement demand created by other attrition under the high, middle, and low estinates will be $\mathbf{4 \%}, \mathbf{3 . 5 \%}$, and $3 \%$, respectively.
c Assumes that $70 \%$ of the 1981-82 Ph.D. cohorts took a postdoctoral aopointment before taking an academic position. See Table 3.3.

SOURCES: Tables 3.3 and 3.4.
system works in the biomedical fields. For example, it is known that almost 70 percent of each biomedical Ph.D. cohort plans to take a postdoctoral appointment after graduation (Table 3.6, line 3). Our data also show that about 9 or 10 percent of all bioscience graduate students complete the Ph.D. program each year (Table 3.6, line 4), and that NRSA programs recently have provided support for 5 to 10 percent of bioscience predcctoral students.

Applying these system parameters, we derive the estirated number of NRSA predoctoral trainees that should be in the pipeline, given our projections of academic demand and the current status of the training system (Table 3.6, line 5). The result is a range of about 1,900-5,780 predoctoral trainees per year in the biosciences during the period 1983-90.

TABLE 3.6 Estimated Number of Basic Biomedical Science Predoctoral Trainees to be Supported Under NRSA Programs

|  | Projected 1983-90 | Actual 1983 |
| :---: | :---: | :---: |
| 1. Estimated number of postdoctoral trainces needed to satisfy demand under the committee's most likely estimate (from |  |  |
| Table 3.5) | 8,010-9,350 | 7,827 |
| 2. Annual attrition from postdoctoral pool if average length of appointment is 3 years | 2,670-3,120 | 2,609 |
| 3. Number of Ph.D.s needed each year to maintain postdoctoral pool level if percentage of Ph.D.s seeking a postdoctoral appointment is: |  |  |
| a. $60 \%$ <br> b. $70 \%$ | $\begin{aligned} & 4,450-5,200 \\ & 3,810-4,460 \end{aligned}$ | 3,775 |
| 4. Average graduate enrollment needed to produce the required number of Ph.D.s if anmual completion rate is: ${ }^{a}$ |  |  |
| g. $9 \%$ <br> b. $\mathbf{1 0 \%}$ | $\begin{aligned} & 42,330-57,780 \\ & 38,100-52,000 \end{aligned}$ | 41,532 |
| 5. Number of NRSA predoctoral traineeships needed if perceatage of graduate students to be supported under NRSA programs is: |  |  |
| a. 5\% <br> b. $10 \%$ | $\begin{aligned} & 1,900-2,890 \\ & 3,810-5,780 \end{aligned}$ | 3,673 (1982) |

a The completion rate is defined here as the ratio of Ph.D.s awarded in any year to graduate enrollments in the same year. This ratio has varied in a narrow range generally between 0.09 and 0.1 since 1960 . It is likely that many graduate students in this field are candidates for the M.A. rather than the Ph.D. degree. See Appendix Tables B1 and B3.

SOURCES: Tahle 3.5, Appendix Tables B1 and B3.

## SUMMARY

The committee's determination of the appropriate number of trainees to be supported under NRSA programs in the basic biomedical sciences has been based on estimates of academic demand and certain assumptions about how the training system operates. projections of demand are derived from a model in which faculty size is dependent upon enrollment and research funding. Graduate enrollment is thought to have more influence on faculty demand than undergraduate enrollment, so the previous model has been modified in this report to allocate more weight to graduate enrollment.

The resulting projections show a somewhat higher annual academic demand through 1990 compared to previous projections through 1988. This is true despite the fact that enrollment and research funding assumptions are lower than previous ones. One reason is that the most recent data for 1983 show that biomedical Ph.D. faculty has continued to grow moderately even though enrollments are declining. Therefore, the faculty/student ratio shows sharp increases in recent years, and this has the effect of raising the projections of faculty size in 1990. However, the outlook is heavily dependent on the last few data points and could change drastically with the next one or two observations.

Another reason is the increase in attrition that is ex acted in the late 1980 s . Based on the faculty age distribution and data from another study, we now estimate attrition due to death and retirement at 1.5 percent per year through 1990 , and 3.5 percent per year for other reasons. These are up from the 1.0 percent per year and 3.0 percent, respectively, that we had projected through 1988.

Finally, there is the question of predoctoral support and how to assess it in terms of national need. This task is made even more difficult by the fact that the time horizon involved in predocioral training is longer than in postdoctoral training. Also, since practically all predoctoral support comes from training grants rather than fellowships, the issue of institutional support becomes another factor to consider along with enrollment trends, Ph.D. production, the postdoctoral pool siż, alternate sources of support, and the long-term outlook. Using the parameters of the current system as guides, and with stability of the system as an important criterion, we have estimated the level of predoctoral support that NRSA programs should provide.

## EVALUATION OF THE MARC HONORS UNDERGRADUATE RESEARCH TRAINING PROGRAM

The Minority Access to Research Careers (MARC) program wars created by the National Institute of General Medical Sciences (NIGMS) to increase the number of biomedical scientists from minority groups. The largest component of the MARC program is the Honors Undergraduate Research Training Program. Trainees (junior and senior level honors students at schools with enrollments drawn substantially from minority groups) receive tuition and stipend support and participate in a specialiy structured curriculum. Exposure to ongoing research in the biomedical sciences is a central component of the training experience.

The MARC Honors program has as its principal objective the encouragement of minority students in the pursuit of gravuate training leading to the Ph.D. degree. It began in 1977 with 74 trainees at 12 participating schools. By 1984, there were 389 undergraduate trainees at 52 programs involving 56 undergreduate institutions. As of August 1984, there were nearly 800 program alumni.

At the suggestion of NIGMS, this committet nas un ectaken an evaluation of the Honors Undergraduate Research Training Program. A complete report describing that evaluation will be puolished separately. The central findings of the MARC Honors Evaluation are described below.

The MARC Honors program was established in response to the small number of minority group members holding research doctorates in the biomedical sciences. Examination of the most current data on scientific employment and training demonstrates that minority group members are still undersepresented at all stages of the scientific career. While some reduction of the minority/nonminority disparity has taken place, substantial underrepresentation of minorities remains the rule.

Site visits to five MARC Honors training programs reveal a diverse array of program activities adapted to the needs of the recipient institutions and their students. The program (often working in conjunction with another NIH program, the Minority Biomedical Research Support program) brings guest speakers to campus, develops new courses, purchases laboratory equipment, and fosters institutional connections between program schools and major research centers. Most of these activities benefit the entire scientific community on campus.

Individual trainees receive stipends and work closely with faculty members on laboratory research projects. As part of their training, the: also attend scientific seminars, conferences, and meetings. A summer research project (usually at a major research university) is a significant part of the MARC Honors experience, Trainees report that th ? laboratory exposure and close contact with faculty members is an important part of their academic and professional development. Many credit these experiences with shaping their decision to pursue research careers.

Faculty members report high levels of motivation among the MARC Honors students and note several examples of published research by undergraduate trainees. At almost every institution, the faculty members identified highly talented students who might not have been able to finish school without the availability of MARC stipends.

Two important issues emerged from the site visits. There seems to be some disagreement over the opcimal location of the trainees' summer research experience. Some MARC faculty members feel that the student is best served by continuing a resear ch project at the home institution. Others find the benefirs of external placement (personal growth as well as broader research experience) to be significant. Emphasis on external placement varies within and across program institutions.

A second issue concerns the selection of trainees. The MARC Honors program was designed explicitly to prepare students for research careers, yet many talented undergraduate science majors plan to pursue professional (but not necessarily research) careers. The question of how to treat students with professional career plans is a crucial issue in the selection of MARC Honors applicants.

A questionnaire inquiring about educational and occupational status was sent to all MARC Honors p=ogram alumi. Sixty-£ive percent of the 821 former trainees in the study population returned the questionnaires. Survey results show that 76.1 percent of the former trainees have enrolled in graduate programs at some point. As of November 12, 1984 (the survey reference date), 43.5 percent of the former trainees were enrolled in doctorate programs (i28 in M.D. or D.D.S. programs, 86 in Ph.D. programs and 3 in M.D./Ph.D. programs). Another 15.1 percent were enrolled in master's degree programs. Since
the first MARC Honors cohort graduated in 1978 (and the first full, two-year trainee cohort in 1979), there has been limited time in which to complete work on a Ph.D. degree. By the fall of 1984, 22 people from the first 3 trainee cohorts ( 21.2 percent) had earned doctorate degrees. Of the completed doctorates, the vast majority were M.D.s; only one respondent had completed a Ph.D. at the time of the survey. Most of the former trainees who were no longer in school were employed in science or engineering fieits ( 62.4 percent). The unemployment rate of former trainees was 9.2 percent and was concentra'ed among those without graduate degrees. While exact comparisons cannot be made, the rates of graduate school attendance and empluyment in science fields for the former MARC Honors trainees are ahere the levels found in the most closely comparable national dati.

Overall, 35.7 percent of the respondents expected to $t$. in research careers by the time they are 35 years old. Among those planning careers in the health professions, a smaller fraction (13.0 percent) expected to be doing research at age 35 . Only a small fraction of the former trainees ( 7.4 percent) expect to be in jous unrelated to science or engineering.

The survey did not reveal any serious deficiencies in the MARC Honors program. While some students left graduate or professional programs before receiving a degree ( 22.2 percent), nearly half are currently enrolled in another graduate program. More students withdrew from mastor's degree programs than from doctorate programs. Students reported a high level of satisfaction with the MARC Honors program in general anu with the research component in particular.

In an attempt to gauge the institutional impact of the MARC Honors program, the percentage of graduates majoring in biology was examined at MARC an nonmarc institutions. The percentage of biology majors has remained level since the late 1970 s for minority students and has decreased for white students. At MARC schools, however, the percentage of biology majors increased (especially among minority students). Both the size and the length of the programs were associated with higher rates of degrees earned in biology. These effects persisted after the impact of other institutional characteristics were taken into consideration.

## A FOLLOW-UP STUDY OF FORMER NIH POSTDOCTORAL TRAINEES AND FELLOWS

A study of the career achievements of NIH postdoctoral trainees and fellows is currently being conducted. The employment, grant, and Eublication activity of biomedical scientists with NIH postdoctoral appointments is being compared to that of biomedical scientists without NIH postdoctoral appointments. Due to the differences in career patterns and sources of data, separate analyses will be conducted for M.D. and Ph.D. scientists.

For Ph.D.s, the NIH group will be divided into trainees and fellows based on the terms of the most recent NIH appointment. The non-NIH group will be subdivided according to their plans for postdoctoral training at the time they completed their Ph.D.

It is expected that this follow-up study will be completed in 1986 and a separate report on it will be published by the committee.

# 4. Behavioral Sciences 


#### Abstract

The academic labor market for behavioral science Ph.D.s continues to expand at a moderate rate of growth. Academic employment of Ph.D.s and postdoctoral training increased in 1983 and are higher than they were in the mid-1970s. Most of the growth has occurred in the field of clinical psychology. Behavioral Ph.D. production rebounded in 1983 from the decline in 1982, but the number of new doctorate recipients is only a slight fraction above the level recorded in the late 1970s. Concurrent with the continued expansion of the academic labor market are continuing declines in $R$ and $D$ funding, undergraduate enrollments, and first-year graduate enrollments. Recently, total griduate enrollments in the behavioral sciences have begun to fall. However, there appears to be a substantial amount of behavjoral science courses being taught to graduate students at professional schools--public health, law, medicine, and business-which tends to increase the demand for behavioral scientists.

The shift toward cli.2ical psychology that began in the mid-1970s is contiauing. In 1977, clinical psychology became the dcininant behavioral science Ph.D. emploument field and now accoinnts for about 45 percent of the behavioral Ph.D. labor force, up from 38 percent in 1975.


## INTRODUCTION AND OVERVIEW

Within the behavioral science fields, it is evident that a strong movement into clinical psychology has occurred in recent years. There has been an increase, both absolute and relative to other areas, in the number of Ph.D.s who identify themselves as clinical psychologists and in the number of new Ph.D. degrees being granted in that field. From the standpoint of the federal government's research program in the behavioral sciences, this trend is cause for some concern since most clinical psychologists work outside the academic sector and many do not contribute to the research effort. Even within the academic sector, clinical psychologists are more likely than other psychologists to be involved in the provision of services and other
non-research activities. One of the principal purposes of the government's research training programs is to provide an adequate supply of scientists with current knowledge of their fields who can be relied on to carry out the agencies' research agenda competently and productively. Practically all of this research is done by Ph.D. scientists in colleges and universities, so we are especially concerned in this study about the career prospects and opportunities in the academic sector. Academic employment of behavioral science Ph.D.s has increased without interruption since the early 1960s (which is as far back as our data go). However, this growth has not been uniform throughout the beharioral sciences. Academic positions in nonclinical fields of psychology have decreased since 1981. Since the bulk of psychological research has been carried out in the academic sector by nonclinical psychologists, this trend is of some possible significance for future research. In this chapter we will examine these trends more closely and make some projections of academic demand and training needs through 1990.

As a result of suggestions made at public hearings and in private communications, the data on behavioral scientists are disaggregated in this report to a greater degree than has been done in the past. In the early work of this committee, the behavioral sciences--psychology, sociology, anthropology, and speech and hearing sciences--were treated as a single group. In 1978 the behavioral sciences were divided into clinical and nonclinical fields. This disaggregation proved helpful because it enabled the identification of divergent market trends within the behavioral sciences. In the current report we carry the disaggregation one step further and divide the nonclinical fields into nonclinical psychology and other behavioral sciences. This yields three behavioral science subdivisions:
--clinical psychology;
--nonclinical psychology; and
--other behavioral science fields (sociology, anthropology, and speech pathology/audiolojy). ${ }^{1}$

## CURRENT SUPPLY/DEMAND INDICATORS

With this additional level of disaggregation, substantial differences among disciplines and education levels (graduate and undergraduate) begin to emerge. For example, undergraduate enrollments in psychology have not been subject to the decline experienced by the other behavioral fielas. Here are some other highlights:

[^14]- Graduate enrollments in the behavioral sciences have been less susceptible to attrition than have undergraduate enrollments. Enrollments at the graduate level rose every year from 1978 through 1981 and only in 1983 did enrollments fall by more than a fraction of a percentage point. In 1983 graduate enrollments in psychology declined less than those in other behavioral science fields.
- $R$ and $D$ funding for behavioral science research decreased in 1983. Research funding for psychology did not decline, however. It remained at its 1982 level which (after adjusting for inflation) was about equal to the 1975 funding levels. The decline in $R$ and $D$ funding occurred in behavioral fields outside of psychology.
- Employment in the behavioral sciences continued to grow along the same lines observed in earlier reports. The self-employment and business sectors were the most rapidly expanding areas. These patterns were general across all subdivisions of the behavioral sciences. Academic employment continued to grow in 1983, but the increases were concentrated in the fields outside of psychology: sociology, anthropology, and speech pathology/audiology.
- The number of behavioral scientists on postdoctoral appointments rose in 1983. Clinical psychology had the greatest increase followed by large increases for the combined category of sociology, anthropology and speech pathology/audiology. Nonclinical psychology had fewer postdoctoral appointments in 1983 than in 1981. The number of nonclinical psychologists with postdoctoral appointments fell to its lowest level since the committee began monitoring these data. While some of these shifts may be due to sampling fluctuations, ${ }^{2}$ the change could signal an imporant decline in research potential. Clinical psychologists on postdoctoral appointments are often being trained in clinical skills; nonclinical psychologists on postdoctoral appointments are more likely to augment the pool of researchers in the behavioral sciences.

In the following sections the supply and demand outlook for behavioral scientists is examined in greater detail.

[^15]Enrollments (Tables 4.1-4.3 and Figure 4.1)
Total enrollments in the behavioral sciences (graduate and undergraduate) declined steadily from 1976 through 1980 (Table 4.1, line 4a). ${ }^{3}$ In 1981, the downward trend was halted and behavioral science enrollments rose for the first time since the early 1970s. The long-term decline in enrollments is due exclusively to trends for undergraduate majors. Graduate enrollments in the behavioral sciences increased during the late 1970 s and have remained stable (near 64,000) since 1978. Only in 1983 was there a non-trivial decline in behavioral science graduate enrollments.


FIGURE 4.1 Behavioral science undergraduate and graduate enroliments in colleges and universities, 1964.81. See Appendix Tables Cl, C4.C8.

[^16]TABLE 4.1 Current Trends in Supply/Demand Indicators for Behayorial Science Ph.D.sa

|  | Fiscal Year |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | Latest Year |  |
| 1. SUPRLY INDICATORS (New Enirants): <br> a. Ph.D. production | 3,988 | 4,190 | 4,246 | 4,207 | 4,245 | 4,192 | 4,472 | 4,188 | 4,318 | 1.2\% | 3.1\% |
| b. \% of Ph.D.s without specific emploment prospects at graduation | 13.3\% | 15.0\% | 15.6\% | 16.7\% | 15.5\% | 14.9\% | 14.6\% | 16.5\% | 18.4\% | 4.1\% | 11.5\% |
| c. Postioctoral appointments | 705 | n/: | 997 | N/a | 1,1II | Na | 972 | na | 1,039 | 5.0\% | 3.4\% |
| d. B.A. degries awarded | 92,609 | 87,446 | 81,491 | 75,899 | 71,109 | 68,859 | 65,733 | 64,386 | n/a | -5.1\% | -2.1\% |

2. DEMAND INDICATORS:
3. Behavioral science $R$ and $D$ expenditures in collepers and universities (1972 S, mil.)
b. Ph.D. facultystudent ratio ${ }^{\text {b }}$

| 117.2 | 107.6 | 103.8 | 103.0 | 105.7 | 111.9 | 114.6 | 102.1 | 99.3 | $-2.1 \%$ | $-2.7 \%$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.032 | $\mathrm{~N} / \mathrm{a}$ | 0.036 | $\mathrm{~N}_{\mathrm{a}}$ | 0.039 | $\mathrm{~N}_{\mathrm{a}}$ | 0.043 | $\mathrm{~N}_{\mathrm{a}}$ | $\mathrm{N} / \mathrm{a}$ | $5.0 \%$ | $5.0 \%$ |

3. LABOR FORCE:

Ph.D.s employed in behaxioral science fields:
a. Total
b. Academic (excl. posidooss.)

| 38,737 | $\mathrm{n} / \mathrm{a}$ | 44,283 | N/a | 4, 322 | W/a | 53,815 | n'a | 58,811 | 5.4\% | 4.5\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21,624 | $\mathrm{N} / \mathrm{a}$ | 25,582 | $\mathrm{N} / \mathrm{a}$ | 26,8\% | N/a | 28,235 | na | 29,776 | 2.9\% | 2.7\% |
| 1,404 | N'a | 1,793 | Na | 1,901 | N/a | 2,764 | Na | 3,390 | 11.6\% | 10.7\% |
| 2,632 | N'a | 2,931 | N/a | 3,288 | N/a | 3,351 | n/a | 3,559 | 3.8\% | 3.1\% |
| 4,936 | N'a | 5,595 | N/a | 6,157 | N/a | 6,481 | n / | 6,544 | 3.7\% | 0.8\% |
| 1,161 | $\mathrm{n} / \mathrm{a}$ | 1,487 | N/a | 2,164 | n/a | 2,120 | $\mathrm{N} /{ }^{\text {a }}$ | 1,865 | 6.1\% | -6.2\% |
| 2,748 | n/a | 3,725 | N/a | 5,209 | na | 7,352 | na | 9,707 | 17.1\% | 14.9\% |
| 1,843 | $\mathrm{N} / \mathrm{a}$ | 2,416 | N/a | 2.958 | N/a | 2,780 | n'a | 3,017 | 6.4\% | 4.2\% |
| 389 | n/a | 754 | $\mathrm{N} / \mathrm{a}$ | 799 | n/a | 732 | n'a | 913 | 11.3\% | 11.7\% |

4. BEHAVIORAL SCIENCE

ENROLLMENTS:
a. Total undergraduate and graduate
enrollments
b. Est. undergraduatee
c. Total graduate d. Firstyear graduatef

| 723,000 | 731,0 | 693,000 | 684,00 | 651,000 | 645,00 | 647,000 | , | Na | -1.8\% |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 668,000 | 672,000 | 635,000 | 620,000 | 587,000 | 581,000 | 583,00 | na | na | -2.2\% | 3\% |
| 55,383 | 59,156 | 58,189 | 63,780 | 0,801 | 63,820 | 4,780 | 64,331 | 63,108 | 1.6 | -1.9\% |
| 28 | 11,821 | 11,606 | 11,695 | 10,30 | 9,938 | 10,227 | ,8410 | 9,650 | -2.7 | -2.0\% |

- Behavioral sciences include anthropology, sciology, psychology, and specch pathology/audiology. Numbers in the report may differ from previous reports because of laxonomy changss, Specch pathology/audiology was excluded in the committer's 1983 report, but is included here, See footnote 1 to this chapter.
${ }^{6}$ Ratio of academically employed Ph.D.s 10 a 4 year weighted average of Iotal graduate and underfraduate enrollments (WS), where (WSS $)_{11}=4 /\left(S_{1}+2 S_{1-1}+2 S_{1-2}+S_{1-3}\right)$.
© Slnce labor force detai are not avalibble for 1982, atest annual change represents average annual growth rate from 1981-83.
- Also includes FFRDC laboratorics.
- Extimated by the formula $U_{1}=\left(A_{1}+2 B_{1+2}\right) C_{1}$, where $U_{i}=$ behavioral science undergraduate enrollment in year $i_{i} A_{1+2}=$ behavioral sience $B$.A. degreses awarded in year $i+2$; $B_{1+2}=$ total $B . A$. degretes awarded in year $i+2 ; C_{i}=$ total undergraduate enrollment in year $I$. The FY 1881 figure is a preliminary estimate.
/Represents full. time students in doctorategrraning insitutions only.
SOURCES: NRC (1958-85, 1973-84); NSF (1973-85a, 1975-85); U.S. Department of Education (1948-81, 1948-84, 1959-79, 1961-889, 1961-844. 1973-82, 1974-83).

TABLE 4.2 Current Trends in Supply/Demand Indicators for Clinical and Nonclinical Psychology Ph.D.s

|  | Fiscal Year |  |  |  |  |  |  |  |  | Groxth Rate from 1975 to Latest Year | Latest <br> Annual Change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |  |  |
| 1. SUPPLY INDICATORS (New Entrants): |  |  |  |  |  |  |  |  |  |  |  |
| Nonclinical Psychology: <br> a. Ph.D. production | 1,607 | 1.590 | 1,637 | 1,591 | 1,582 | 1,517 | 1,615 | 1,477 | 1,545 | -0.5\% | 4.6\% |
| b. 乍 of Ph.D.s without specific employment prospects at graduation | 13.1\% | 16.3\% | 15.5\% | 16.3\% | 14.6\% | 13.1\% | 12.2\% | 15.6\% | 16.3\% | 2.8\% | 4.5\% |
| c. Postdoctoral appointments | 398 | $\mathrm{n} / \mathrm{m}$ | 394 | n/a | 527 | n/a | 511 | n/a | 302 | $-4.4 \%$ | -23.1\% |
| Cainical Psychoogy: |  |  |  |  |  |  |  |  |  |  |  |
| d. Ph.D. production e. of of Ph.D.s without specific | 1,144 | 1,293 | 1,353 | 1,464 | 1,509 | 1,581 | 1,743 | 1,681 | 1,762 | 5.5\% | 4.8\% |
| employment prospeets at graduation | 14.7\% | 14.8\% | 16.0\% | 17.6\% | 16.35 | 14.6\% | 14.8\% | 15.7\% | 16.9\% | 1.8\% | 7.6\% |
| f. Postdoctcral appointments | 156 | n/a | 357 | n/a | 302 | n/a | 262 | n/a | 465 | 14.7\% | 33.4\% |

2. DEMAND INDICATOR:
a. Psychology R\&D at colleges and universitles (1972 \$, mil.)

| 63.1 | 58.2 | 60.1 | 59.0 | 60.7 | 62.3 | 65.9 | 63.7 | 63.6 | $0.1 \%$ | $-0.2 \%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3. LABOR FORCE:

## Ph.D.s empioyed in nonclinical psychology

 fields:a. Totul
b. Academic (excl. postdocs.)
c. Business
d. Government
e. Hospltals/cinics
f. Nonprofit
g. Self-employed
h. Other (incl. postdocs.)
i. Unemployed and seeking

| 15,387 | n/a | 16,102 | n/a | 16,688 | n'a | 18.791 | n/a | 19,431 | 3.0\% | 1.7\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10,863 | n/a | 10,905 | n/a | 11,538 | n/a | 12,586 | n/a | 12,404 | 1.7\% | -0.7\% |
| 1,218 | n/a | 1,344 | n/a | 1,355 | n/a | 1,827 | n/a | 2,258 | 8.0\% | 11.2\% |
| 1,170 | n/a | 1,404 | n/a | 1,164 | n/a | 1,235 | n/a | 1,320 | 1.5\% | 3.4\% |
| 470 | n/a | 447 | n/a | 401 | n/a | 905 | n/a | 1,328 | 13.9\% | 21.1\% |
| 560 | n/a | 519 | $\mathbf{n} / \mathbf{a}$ | 574 | $n / a$ | 507 | n/a | 629 | 1.5\% | 11.4\% |
| 401 | n/a | 443 | $n / \mathbf{n}$ | 321 | $n / \mathbf{a}$ | 631 | n/a | 451 | 1.5\% | -15.5\% |
| 527 | n/a | 649 | Na | 961 | n/a | 806 | n/a | 635 | 2.4\% | - 11.2\% |
| 178 | n/a | 391 | n/a | 374 | H/4 | 294 | n/a | 406 | 10.9\% | 17.5\% |
| 14.246 | n/a | 17,578 | n/m | 21,268 | n/a | 23.775 | n/a | 26,285 | 7.4\% | 5.1\% |
| 5,120 | n/a | 5,438 | n/a | 5,790 | $n /$ | 6,172 | n/a | 6.370 | 2.7\% | 1.6\% |
| 165 | n/m | 409 | N/m | 417 | n/a | 880 | n/a | 1,004 | 25.3\% | 6.8\% |
| 1,252 | n/a | 1,216 | n/a | 1,671 | n/a | 1,653 | n/a | 1,854 | 5.0\% | 5.9\% |
| 4,425 | n/a | 5,102 | $n / m$ | 5,702 | n/a | 5,937 | n/a | 5,737 | 3.3\% | -1.7\% |
| 363 | n/a | 662 | n/a | 1,093 | n/a | 1,032 | n/a | 1,165 | 15.7\% | 6.2\% |
| 2,292 | n/a | 3,201 | n/a | 4,785 | n/a | 6,264 | n/a | 7,993 | 16.9\% | 13.0\% |
| 1,151 | n/a | 1.468 | n/a | 1,674 | n/a | 1,629 | n/a | 1,995 | 7.1\% | 10.7\% |
| 58 | n/a | 82 | n/a | 136 | n/a | 208 | n/a | 16! | 13.6\% | -12.0\% |

4. PSYCHOLOGY ENROLLMENTS:
a. Total undergraduate and graduate
b. Est, undergraduate
c. Total graduate d. Est. nonclinical graduate e. Est. clinkal graduate

| 425,000 | 434,000 | 419,000 | 422,000 | 408,000 | 415,000 | 426,000 | n/a | n/a | 0.04\% | 2.7\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 392,000 | 399,000 | 384,000 | 383,000 | 369,000 | 375,000 | 385,000 | n/a | $n / \mathrm{a}$ | -0.3\% | 2.7\% |
| 32,794 | 35,318 | 35,363 | 38,628 | 39,207 | 39,786 | 40,6.36 | 40,691 | 40,098 | 2.5\% | -1.5\% |
| 17,954 | 18,393 | 18,099 | 18,915 | 18,856 | 18,608 | 18,985 | 19,039 | 18,761 | 0.6\% | -1.5\% |
| 14,840 | 16,925 | 17,264 | 19,713 | 20,351 | 21,178 | 21,651 | 21,652 | 21,337 | 4.6\% | -1.5\% |

- Stnce labor force data are not available for 1982, Jatest annual change represents average annual growth rate from 1981-83.
- Atso Includes FFRDC laboratories.
- Estimated by the formula $U_{1}=\left(A_{1}, 2 / B_{1}, 2\right) C_{1}$, where $U_{1}=$ psychotogy undergraduate enrollment in year $i_{;} A_{1,2}=$ psychology $B . A$. degrees awarded in year $1+2 ; B_{1,2}=$ total B.A. degrees awarded $\operatorname{In}$ year $1+2 ; C_{i}=$ total undergraduate enrollment in year $I$. The $F Y 1981$ figure is a preliminary estimate.

SOURCES: NRC (1958-85, 1973-84); NSF (1973-85a, 1975-85); U.S. Department of Education (|948-81, 1948-84, 1959-79, 1961-84a. 1961-84b, 1973-82, 1974-83).

TABLE 4.3 Current Trends in SuppiyDDemand Indicators for Other Behayorial Science Ph.D.s (Sociology, Anthropology, Speech Pathology/Audiology)

|  | Fiscal Yiar |  |  |  |  |  |  |  |  | Growth |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | from 1975 to Latest Year | Annual <br> Change |
| 1. SUPPLY INDICATORS (New Entrants): <br> 2. Ph.D. production | 1,189 | 1,307 | 1,256 | 1,152 | 1,154 | 1,094 | 1,114 | 1,030 | 1,011 | -2.0\% | -1.8\% |
| b. \%of Ph.D.s without specific empioyment prospects at gradualion | 12,3\% | 13,3\% | 15.3\% | 16.3\% | 15.7\% | 17.3\% | 17.7\% | 19.2\% | 23.9\% | 8.7\% | 24.5\% |
| c. Postdoctoral appointments | 151 | n/a | 246 | W/a | 282 | n/a | 199 | $\mathrm{n} / \mathrm{a}$ | 271 | 7.6\% | 16.7\% |
| d. B.A. degrees ayarded | 3,732 | 3,925 | 3,864 | 3,551 | 3,554 | 3,576 | 3,445 | 3,446 | N/a | -1.1\% | 0.03\% |
| 2. DEMAND INDICATOR: <br> 2. Sociology $R$ and $D$ expenditures in colleges and unlverstice ( 1972 S, mill.) | 54.0 | 49.5 | 43.7 | 44.0 | 45.0 | 49.6 | 48.7 | 38.3 | 35.6 | -5.1\% | -7.1\% |
| 3. LABOR FORCE: ${ }^{\text {a }}$ <br> Ph.D.s employed in other behavioral science Gieds: |  |  |  |  |  |  |  |  |  |  |  |
| a. Total | 8,504 | n'a | 10,603 | W/a | 11,366 | n/a | 11,249 | n/a | 13,095 | 5.5\% | 7.9\% |
| b. Academic (excl. postdo ${ }^{\circ} \mathrm{i}$ ) | 7,621 | n/a | 9,239 | W'a | 9,568 | n/a | 9,477 | $\mathrm{n} / \mathrm{a}$ | 11,002 | 4.7\% | 7.7\% |
| c. Business | 21 | n'a | 40 | W'a | 129 | n/a | 57 | n/a | 128 | 25.3\% | 49,9\% |
| d. Government ${ }^{\text {b }}$ | 210 | n'a | 311 | n'a | 453 | n/a | 463 | n/a | 385 | 7.9\% | -8.8\% |
| c. Hospitaskdinics | 41 | n'a | 46 | n'a | 54 | n/a | 37 | n/a | 218 | 23.2\% | 142.7\% |
| f. Nonprofit | 238 | n'a | 306 | W/a | 497 | n/a | 457 | n/a | 249 | 0.6\% | -26.2\% |
| g. Selfemployed | 55 | n'a | 81 | W/a | 103 | n/a | 183 | na | 380 | 27.3\% | 44.1\% |
| h. Other (thed, postdos.) | 165 | n'a | 299 | W/a | 323 | n/a | 345 | na | 387 | 11.2\% | 5.9\% |
| i. Unemployed and seeking | 153 | n'a | 281 | W/a | 239 | n/a | 230 | n/a | 346 | 10.7\% | 22.7\% |
| 4. OTHER BEHAVIORAL SCIENCE ENROLLMENTS: |  |  |  |  |  |  |  |  |  |  |  |
| a. Total undergraduale and graduate enrollments | 299,000 | 297,000 | 274,000 | 262,000 | 243,000 | 230,000 | 221,000 | n'a | W/a | -4.9\% | -3.9\% |
| b. Est, undergraduatef | 276,000 | 273,000 | 251,000 | 237,000 | 218,000 | 206,000 | 197,000 | n/a | n'a | $-5.5 \%$ | -4,4\% |
| c. Graduate | 22,589 | 23,738 | 22,926 | 25,152 | 24,594 | 24,034 | 24,144 | 23,640 | 23,010 | 0.2\% | -2.7\% |

- SIrce labor force data are not available for 1982, latest annual change represents average annual grouth rate from 1981-83.
- Alss includes FFRDC laboratories.
' Estimated by the formula $U_{1}=\left(A_{1+2} / B_{i+2}\right) C_{1}$, where $U_{i}=$ other behavioral science undergraduale enrollment in year $i ; A_{1+2}=$ other behavioral science B. $A$. degrees amarded $\ln$ year $i+2 ; B_{1+2}=$ total $B . A$. degrees awarded $\ln$ year $i+2 ; C_{i}=$ otal undergraduate enrollment in year $i$. . The $F Y$ 1981 iqure is a preliminary estimate.

SOURCES: NRC (1958-85, 1973-84); NSF (1973-85a, 1975-85); U.S. DeparIment of Education (19488-81, 1948-84, 1955-79, 1961-84a, 1961-84b, 1973-82, 1974-8)).

## Psychology Enrollments

Most of the decrease in belavioral science enrollments is found in disciplines other than psychology. Psychology enrollments have been very stable since 1975 while enrollments in the other behavioral sciences have declined (Figure 4.1). Total psychology enrollment (graduate and undergraduate combined) was approximately 425,000 in 1975 and approximately 426,000 in 1981 (Table 4.2, line 4a). Undergradife psychology enrollments declined in 1977, 1978, and 1979 and rose agisin in 1980 and 1981. At the same time that undergraduate enrollments were declining, graduate enrollments in psychology rose. The number of psychology graduate students grew rapidly from 1975 through 1978 and smaller gains in enrollments continued through 1982. Only in 1983 did the graduate enrollments in psychology decline.

Almost all of the growth in psychology graduate enrollments was due to students in clinical specialties. The clinical fields grew each year from 1975 through 1982. During this period the average growth rate for clinical psychology enrollments was 5.6 percent (Table 4.2, line 4e). In more recent years the clinical growth rate has slowed. Nonclinical psychology graduate enrollments have been extremely stable, rising from 17,954 in 1975 to 19,039 in 1982 (Table 4.2, line 4d). In 1983 both clinical and nonclinical psychology graduate enrollments fell by 1.5 percent.

Other Behavioral Science Enrollments
Total graduate and undergraduate enrollments in behavioral science disciplines other than psychology have declined steadily since 1975. The rate of decline in recent years is only slightly smaller than the average decline over the entire period (Table 4.3, line 4a). Most of the decline is due to trends in undergraduate enrollments which fell from 276,000 in 1975 to 197,000 in 1981. Graduate enrollments in these behavioral science fields rose at the end of the 1970 s and have begun to fall in 1982 and 1983. Over the entire 1975 to 1983 period, the average growth rate for other behavioral science graduate enrollments has been 0.2 percent (Table 4.3, line 4c).

In summary, the trends in behavioral science enrollments vary by field and by educational level. Undergraduate enrollments have fallen. This decline is less pronounced in psychology and more concentrated in the other behavioral science fields. Graduate enrollments increased in the late 1970 s and have not declined appreciably in recent years. Most of the expansion in graduate enrollments has been due to the growing number of graduate students in clinical psychology.

Reliability of Behavioral Science Undergraduate Enrollment Estimates
In the preceding discussion, the estimates of undergraduate enrollments were based on earned baccalaureate degrees and thus tend to measure the number of students majoring in behavioral sciences. Some observers have suggested that the role of the behavioral sciences in undergraduate education may be underestimated by relying on number of majors rather than on number of course enrollments. The argument is based on the view that behavioral science courses are frequently taken as requirements or electives by non-majors. Thus, the proportion of students in behavioral science courses may exceed the proportion of behavioral science majors and it is possible that the committee's estimates of enrollments in these fields underestimate the true teaching loads. We have undertaken an examination of that possibility.

Course enrollment data are not collected in a systematic and comprehensive manner by federal agencies. However, a 1982 survey by the American Council on Education (ACE) collected course enrollment data in science, engineering, and the humanities for the fall of 1980 (Atelsek and Anderson, 1982). The ACE data were obtained from a stratified sample of 598 institutions, of which 498 ( 71 percent) provided usable responses.

The hypothesis that the number of behavioral science majors is not a good estimator of teaching loads in these fields can be tested by comparing course enrollments with the number of $B . A$. degrees granted in each field. If the service load is heavy, course enrollments in a field--expressed as a percentage of total course enrollments--should be greater than B.A. degrees in the field-expressed as a percentage of total B.A. degrees. In other words, one would expect that for fields with heavy service loads:

$$
\frac{C E_{i}}{C E_{T}}>\frac{\mathrm{BA}_{i}}{B A_{T}}
$$

where:

$$
\begin{aligned}
& C E_{i}=\text { course enrollments in field } i \\
& C E_{T}=\text { total course enrollments in all fields } \\
& B A_{i}=B . A . \text { degrees awarded in field } i \\
& B A_{T}=\text { total } B . A . \text { degrees awarded. }
\end{aligned}
$$

The relevant data are shown in Table 4.4. Course enrollment data are shown for fall 1980 and B.A. degrees are shown for 1982. Note that in math and English, fields known for high service loads, the shares of undergraduate course enrollments are much higher than the shares of bachelor's degrees. In the behavioral fields that is not the case.

TABLE 4.4 Course Enrollments and B.A. Degrees in Science and Humanities Fields

|  | Undergraduale Student Credit Hours, Fall 1980 (thoussands) |  |  |  |  |  | B.A. Degrees Awarded in 1982 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total |  | Lower Division |  | Upper Division |  | N | \% |
|  | $N$ | \% | $N$ | $\%$ | $N$ | \% |  |  |
| TOTAL <br> Subtotal for Science and | 69,931 | 100.0 | 56,481 | 100.0 | $\underline{13,450}$ | 100,0 | 388,080 | 100.0 |
| Engineering Fields | 48,967 | 70.0 | -38,226 | 61.7 | 10,741 | 79.9 | 321,785 | 82.9 |
| Chemistry | 3,503 | 5.0 | 2,957 | 5.2 | -547 | $\frac{1}{4.1}$ | $\stackrel{112055}{ }$ | $\frac{8.8}{2.8}$ |
| Computer Science | 2,670 | 3.8 | 2,204 | 3.9 | 466 | 3.5 | 20,267 | 5.2 |
| Earth Scinnces | 1,567 | 2.2 | 1,280 | 2.3 | 287 | 2.1 | 6,688 | 1.7 |
| Engineering | 3,661 | 4.8 | 1,233 | 2.2 | 2,128 | 15.8 | 66,513 | 17.1 |
| Engineering Technology | 1,615 | 2.3 | 1,366 | 2.4 | 249 | 1.8 | 12,984 | 3.3 |
| Life Sciences | 6,745 | 9.6 | 5,109 | 9.0 | 1,637 | 12.2 | 59,081 | 15.2 |
| Mathematical Sciences | 9,834 | 14.1 | 8,959 | 15.9 | 876 | 6.5 | 11,599 | 3.0 |
| Physis/Astronomy | 2,656 | 3.8 | 2,322 | 4.1 | 334 | 2.5 | 6,302 | 1.6 |
| Psychology | 5,835 | 8.3 | 4,432 | 7.8 | 1,403 | 10.4 | 40,950 | 10.6 |
| Social Sciences (Basic) | 11,179 | ' 16.9 | 8,364 | 14.8 | 2,815 | 20.9 | 86,346 | 22.2 |
| Subtotal for Four |  |  |  |  |  |  |  |  |
| Humanities Fields | 20,965 | 30.0 | 18,256 | 32.3 | 2,709 | 20,1 | 66,295 | 17.1 |
| English \& Amer, Lit. | 11,267 | $\overline{16.1}$ | $\stackrel{10,166}{ }$ | 18.0 | 1,101 | $\frac{8.1}{8.2}$ | $\frac{6129}{36,768}$ | $\frac{17.1}{9.5}$ |
| Hisiory | 4,538 | 6.5 | 3,738 | 6.6 | 800 | 5.9 | 17,146 | 4.4 |
| Modern Languages | 3,289 | 4.7 | 2,822 | 5.0 | 467 | 3.5 | 8,990 | 2.3 |
| Philosophy | 1,871 | 2.1 | 1,529 | 2.7 | 341 | 2.5 | 3,991 | 0.9 |

${ }^{a}$ Defined as the credit value of a course multipllied by the number of students registered for that course.
SOURCES: Atelsek and Anderson (1982); U.S. Department of Education (1948-84),

In psychology, $\frac{C E_{i}}{C E_{T}}=8.3 \%$ and $\frac{B A_{i}}{B A_{T}}=10.6 \%$
In the social sciences,,$^{4} \frac{C E_{i}}{C E_{T}}=16.0 \%$ compared to $\frac{B A_{i}}{B A_{T}}=22.2 \%$
These data do not seem to support: the hypothesis that the service load in behavioral fields when measured by course enrollments is greater than when measured by majors. However, more conclusive evidence may be needed. The data cover only a single year and perhaps the relationships have been changing over time.

At the graduate level, the situation may be different. There appears to be a substantial number of behavioral sciences courses being offered to graduate students in professional schools such as public health, law, medicine, and business. In schools of public health, for example, the accreditation rules require behavioral science courses to be included in the core curriculum. In business schools, courses are offered in marketing and industrial psychology, and sociology of organizations. Law students may take courses in research on jury selection, and medical students are offered courses in psychopathology, death and dying, and public health.

Ph.D. Production (Tables 4.1-4.3 and Figure 4.2)
In 1983, 4, $318 \mathrm{Ph} . \mathrm{D} . \mathrm{s}$ were granted in the behavioral sciences (Table 4.1, line la). This represents an increase of 3.1 percent over the 1982 level. All of the growth in behavioral science Ph.D. production is due to the rising number of psychology Ph.D.s (Table 4.2, lines la and ld). The number of new Ph.D.s in clinical psychology rose by 4.8 percent in 1983; the rate of increase for nonclinical psychology Ph.D.s was only slightly lower ( 4.6 percent). In both cases the 1983 gains reversed the drop in Ph.D. production observed in 1982. It is only when long-term growth--e.g., 1975 to present-is considered that a difference between clinical and nonclinical psychology Ph.D. production is found (Figure 4.2). The number of new doctorates in clinical psychology had a growth rate of 5.5 percent, while in nonclinical areas of psychology the rate of growth was -0.5 percent.

In the behavioral science fields other than psychology there was a decline in Ph.D. production in 1983. The number of new Ph.D.s fell from 1,030 in 1982 to 1,011 in 1983 (Table 4.3, line la). This decline of 1.8 percent is roughly equivalent to the annual rate of change from 1975 through 1983.
"The following fields were included in the social sciences in the ACE survey: agricultural economics, anthropology, archeology, economics, geography, history of science, linguistics, political science, and sociology.


FIGURE 4.2 Ph.D. degrees awarded in behavioral science fields, 1961-83. See Appendix Table ClO.

The estimation of the supply of behavioral researchers is further complicated by the rise of autonomous (so called "professional") schools of psychology. As research training is not generally a focus of the curricula of these schools, it seems reasonable to assume that they contribute to the number of individuals seeking employment in psychological service, and add little or nothing to the supply of research scientists in psychology. A report published in 1982 counted 43 schools of professional psychology. Nineteen offer the Ph.D. degree, 21 offer the Psy.D. (Doctor of Psychology), and 3 offer both degrees (McNett, 1982). Only Ph.D. recipients are included in the present discussion of trends in the behavioral sciences. As a result, our figures will not be the same as those which include Psy.D. degree holders.

The exclusion of Psy.D. degree holders does not completely eliminate the graduates of these schools of professonal psychology from our tabulation of psychologists. All schools granting the Ph.D. degree are included in our figures. Four large professional schools offering the Ph.D. degree produced 148 clinical psychology Ph.D.s in 1984 and 6 nonclinical Ph.D.s. The 148 clinical psychology Ph.D.s represent 8.6 percent of all Ph.D.s granted during the year. Other unidentified schools of professional psychology also add to the supply of clinical Ph.D.s. Thus, the number of researchers in p:ychology included in our data on the Ph.D. labor force may be overestimated due to the presence of Ph.D. holders from schools whose curriculum has little research emphasis.

Postdoctoral Appointments (Tables 4.1-4.3 and Figure 4.3)
The number of behavioral scientists on postdoctoral appointments rose from 1981 to 1983, reversing the pattern of the previous two-year period. In 1981, there were 972 behavioral science postdoctoral appointments. By 1983 this number reached 1,039 , an increase of 3.4 percent (Table 4.1, line lc). The growth rate for postdoctoral appointments during the 1975 to 1983 period was 5 percent, over four times the rate of growth for behavioral science Ph.D.s.

As was the case with graduate enrollments and Ph.D. production, the greatest growth in postdoctoral appointments is found in clinical psychology (Figure 4.3). The number of clinical psychologists or. postdoctoral appointments rose from 262 in 1981 to 466 in 1983 (Table 4.2, line lf). This rapid rate of postdoctoral growth ( 33.4 percent) outstripped the growth rate for new Ph.D.s. in clinical psychology. These new Ph.D.s, it may be assumed, contribute mainly to the supply of clinical service providers and add less to the supply of research scientists.


FIGURE 4.3 Postdoctoral appointments in behavioral science fields, 1962-83. See Appendix Table C3.

The number of nonclinical psychologists on postdoctoral appointments fell from 511 in 1981 to 302 in 1983 (Table 4.2, line lc). The decline in postdoctoral appointments was far greater than the decline in Ph. D. production for the same time period. In 1975 the majority of the psychologists on postdoctoral appointments were from nonclinical fields. By 1983, there were more clinical than nonclinical psychologists holding postdoctoral appointments, a reversal of the 1975 pattern.

In the other behavioral sciences, the number of postdoctoral appointments rose sharply during the 1981-83 period while the number of new Ph.D.s declined. The growth rate for postdoctoral appointments was 16.7 percent while the number of $\mathrm{Ph} . \mathrm{D} . \mathrm{s}$ produced dropped by 2 percent.

## R and D Expenditures (Tables 4.1-4.3 and Figure 4.4)

Behavioral science research and development expenditures at colleges and universities declined in 1983 by 2.7 percent from the 1982 level. This represents a smaller decline than the one recorded in the previous year (Table 4.1, line 2a). Behavioral science $R$ and D expenditures declined in the late l970s (from $\$ 117.2$ million in 1975 to $\$ 103.0$ million $^{5}$ in 1978), rose in 1979 , 1980 , and 1981 , before dropping again in 1982 and 1983 (Figure 4.4). The 1981 funding level ( $\$ 99.3$ million) is below the 1975 funding level after adjusting for inflation.

Research and development expenditures for psychology show little change between 1982 and 1983 (Table 4.2, line 2a). The $\$ 63.6$ million (in constant 1972 dollars) that universities spent on psychology $R$ and D in 1983 is just $\$ .5$ million above the 1975 level. While there were some fluctuations during the intervening years, the growth rate from 1975 to 1983 was 0.1 percent.
$R$ and $D$. expenditures in sociology have declined during the same period. Funding dec!.ined from $\$ 38.3$ million in 1981 to $\$ 35.6$ million in 1983, a loss of 7.1 percent. The 1983 R and D figure is well below the $\$ 54.0$ million reported in 1975 (Table 4.3, line 2a). Sociology $R$ and $D$ expenditures declined in 1976 and 1977, rose in 1979 and 1980, and then declined again (1981 through 1983). Over the entire period the average annual decline in funding was 5.1 percent.

## Employment Sectors (Tables 4.1-4.3)

For the total behavioral science population (regardless of field), the number of Ph.D.s increased during 1983 in every employment sector except nonprofit corporations (Table 4.1, lines 3a-i). The largest gains over 1981 were in self-employment (up 14.9 percent) and business

[^17]

FIGURE 4.4 Behavioral science $R$ and $D$ expenditures in colleges and universities, 1964-83 (1972 \$, millions). See Appendix Tables C18-C21.
employment (up 10.7 percent). Unemployment also grew in 1983 (but here the percentage change figures are misleading because of the small numbers of unemployed persons). Academic employment of behavioral scientists rose 2.7 percent in 1983. These changes are continuations of longer trends obsarvable since 1975. The only major shift in behavioral science employment patterns is the decreased level of employment in nonprofit corporations. This reverses a longer term pattern of expanding employment in this sector.

Some important variations were found when the behavioral science Ph.D. population is disaggregated. Nonclinical psychologists had increased employment in hospitals and businesses in 1983, continuing trends that have been present since the 1970s (Table 4.2, lines 3a-3i). Employment in nonprofit corporations increased in 1983. Academic employment of nonclinical psychologists showed a small decrease from the 1981 level. Since 1975, the growth rate for academic employment has been 1.7 percent. Unemployment among nonclinical psychologists also rose in 1983.

For clinical psychologists, the largest gains in 1983 were in the self-employed category. The number of clinical psychologists reporting self-employment rose 13.0 percent above the 1981 level (Table 4.2, lines $3 j-3 r$ ). The next largest gains ( 10.7 percent) were for "other" employment, the category that includes postdoctoral appointments. Gains in self-employment and "other" employment followed long-term employment trends for clinical psychologists. In 1983 there was a reduction in the number of clinical psychologists unemployed and seeking work. Employment in businesses showed smaller growth in 1983 ( 6.8 percent) than had been the case in the period from 1975 to 1981.

In the other behavioral sciences, employment in hospitals, businesses, and self-employment continued to grow in 1983, but at a much higher rate than before (Table 4.3, lines 3a-3i). Academic employment also rose for this group at a level slightly greater than the average growth rate for the 1975 to 1983 period. Fewer persons were employed by government and nonprofit corporations and (like nonclinical psychologists) unemployment rose in 1983 for other behavioral scientists. Similar trends are reported by Huber (1985), who examined the employment patterns of sociologist separately from those of other behavioral scientists.

Since 1973 there has been only slight growth in the academic employment of behaviora.' scientists. Areas of rapid growth have been in the nonacademic sectors. The changing employment distribution of behavioral scientists (favoring clinical and other nonacademic settings) may have important implications for the future of behavioral science research. psychologists in human service settings devote a much smaller portion of their time to research than do psychologists in academic settings (Pion and Lipsey, 1984). The shifting employment picture has had a subsequent effect on academic departments. Pion and Lipsey report that the percentage of "academic" programs in psychology has decreased while the percentage of clinical and counseling programs has increased.

## The Behavioral Ph.D. Faculty/Student Ratio

In the biomedical and clinical fields, faculty/student ratios have had a strong positive correlation with $R$ and $D$ expenditures, but no such relationship can be found for the behavioral sciences--faculty/ student ratios have continued to $r$ ise while $R$ and $D$ expenditures and enrollments have declined (Figure 4.5).

In its 1983 report, the committee speculated on the reasons for these apparently conflicting trends. Several possibilities were considered--enrichment of faculty by Ph.D.s, graduate enrollment trends, increasing part-time employment, and inaccurate enrollment estimates. Evidence has accumuiated on each of these considerations, and we are now in a better position to assess the significance of each of these potential factors.

## Part-time Employment

Part-time academic employment of behavioral science Ph.D.s has been increasing much more rapidly than full-time employment since 1973. However, it still constitutes only a very minor portion of total employment and does not seem to be an important factor in the growth of Ph.D. faculty.

| FY | Total | Full-time | Part-Time | \% Part-Time |
| :---: | :---: | :---: | :---: | :---: |
| 1973 | 19,928 | 19,220 | 708 | 3.6 |
| 1983 | 29,776 | 28,091 | 1,685 | 5.7 |

SOURCE: Appendix Table Cl7.


FIGURE 4.5 Behavioral science Ph.D. faculty/student ratio, 1964-81. See Appendix Table CI 6.

Accuracy of Enrollment Estimates
The argument that the committee's data on behavioral science majors underestimates the behavioral science undergraduate course enrollment was discussed earlier. From the examination of enrollment data for 1984, it appears that the use of data on majors as an approximation for enrollments does not underestimate the share of the undergraduate teaching load attributed to the behavioral sciences.

Enr ichment
As the number of behavioral scientists employed by colleges and universities has expanded over the past 20 years, an increasing proportion of them have been Ph.D.s. This process is known as enrichment. It occurs as Ph.D.s replace non-Ph.D.s on the faculty, or as non-Ph. D. faculty members receive Ph.D. degrees. Much of the increase of Ph.D.s on behavioral science faculties in recent years can be explained by this process. In 1966 only 57 percent of the academically employed behavioral scientists had Ph.D.s; by 1983, the figure had risen to 79 percent (Table 4.5). More importantly, the Ph.D. component has continued to increase since 1977 even though total academic employment of behavioral scientists has declined.

Enrichment is likely to have had its greatest impact at colleges and universities without doctoral programs. Doctorate-granting universities have had a high percentage of Ph.D.s on their faculty for several decades. However, some of the increase in the proportion of Ph.D. faculty could be due to changes in the timing of entry into the academic labor market. During the period of rapidiy rising behavioral science enrollments, young scholars frequently took faculty positions without having completed their dissertation. Data from the Doctorate Records File indicate that 24.1 percent of the new behavioral science Ph.D.s in 1972 had been employed on college or university faculties during the year prior to receipt of their doctorate degree. As they finished their degrees, the number of $\mathrm{Ph} . \mathrm{D}$. faculty members rose. With the passing of the period of high enrollments and the onset of a much more competitive market, the employment of scholars without completed degrees became steadily less common. Only 10.2 percent of the 1982 behavioral science Ph. D. recipients reported faculty employment in the year prior to the receipt of their doctorate. This would also serve to increase the proportion of faculty members with Ph.D.S.

## Graduate Enrollment Trends

Behavioral science graduate enrollments have only recently begun to decline after growing steadily throughout the 1970s. The table below shows that the graduate component has almost doubled in size relative to total behavioral science enrollments since 1970.

## 114

## Behavioral Science Enrollments

```
FY

Behavioral
Enrollments
\begin{tabular}{ccc}
\(\#\) & 8 & of Total \\
\cline { 1 - 1 } & & \\
36,500 & & 5.7 \\
55,400 & 7.7 \\
64,200 & & 10.0 \\
65,200 & & 10.1
\end{tabular}

TABLE 4.5 Behavioral Scientists Employed in Colleges and Universities, 1961-83
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Fiscal \\
Year
\end{tabular}} & \multicolumn{2}{|c|}{Totala} & \multicolumn{2}{|c|}{Ph.D.s \({ }^{\text {b }}\)} & \multicolumn{2}{|c|}{Non-Ph.D.se} \\
\hline & N & \% & N & \% & N & \% \\
\hline 1961 & 13,700 & 100.0 & & & & \\
\hline 1962 & n/a & & 5,339 & & & \\
\hline 1963 & n/a & & n/a & & & \\
\hline 1964 & n/a & & 8,143 & & & \\
\hline 1965 & 15,691 & 100.0 & n/a & & & \\
\hline 1966 & 17,304d & 100.0 & 9,783 & 56.5 & 7,521 & 43.5 \\
\hline 1967 & 18,916 & 100.0 & n/a & & n/a & \\
\hline 1968 & 21,574d & 100.0 & 12,915 & 59.9 & 8,659 & 40.1 \\
\hline 1969 & 24,231 & 100.0 & n/a & & n/a & \\
\hline 1970 & 26,180 \({ }^{\text {d }}\) & 100.0 & 16,175 & 61.8 & 10,005 & 38.2 \\
\hline 1971 & 28,129 & 100.0 & n/a & & n/a & \\
\hline 1972 & 29,744d & 100.0 & n/a & & n/a & \\
\hline 1973 & 31,359 & 100.0 & 19,928 & 63.1 & 11,572 & 36.9 \\
\hline 1974 & 32,980 & 100.0 & n/a & & n/a & \\
\hline 1975 & 35,883 & 100.0 & 23,624 & 65.9 & 12,252 & 34.1 \\
\hline 1976 & 38,121 & 100.0 & n/a & & n/a & \\
\hline 1977 & 39,237 & 100.0 & 25,582 & 65.2 & 13,655 & 34.8 \\
\hline 1978 & 39,159 & 100.0 & n/a & & n/a & \\
\hline 1979 & 38,458 \({ }^{\text {d }}\) & 100.0 & 26,896 & 69.9 & 11,562 & 30.1 \\
\hline 1980 & 37,758 & 100.0 & n/a & & n/a & \\
\hline 1981 & 38,074 & 100.0 & 28,235 & 74.5 & 9,839 & 25.5 \\
\hline 1982 & 38,335 & 100.0 & n/a & & n/a & \\
\hline 1983 & 37,875 & 100.0 & 29,776 & 78.6 & 8,099 & 21.4 \\
\hline
\end{tabular}
a Includes psychologists and soclologists only.
\({ }^{6}\) Includes psychologists, soclologists, anthropologists, and speech pathologists/audlologists.
c Obtained by subtracting number of Ph.D.s from total behavioral sclentists employed in colleges and unlversitles.
\({ }^{d}\) Interpolated.
SOURCES: NRC (1973-84); NSF (1965-84).

Since graduate education traditionally puts greater demands on ph.D. faculty members than does undergraduate education, it seems reasonable to conclude that the relative growth of graduate enrollments has helped to maintain the growth of behavioral science Ph.D. faculty.

The best explanation for the steady growth in behavioral science Ph.D.s employed at colleges and universities is that it is due mainly to the enrichment process. The growing importance of graduate education in the behavioral sciences, and its more intensive demands on faculty time, can also be seen as a contributing factor.

\section*{THE MARKET OUTLOOK}

\section*{Projections of Academic Demand for Behavioral Ph.D.s}

The number of behavioral science Ph.D.s employed in the academic sector from 1962 to 1983 forms a typical growth pattern--rapidly increasing in the early stages and slowly increasing in the later ones (Figure 4.6). To obtain projections of academic demand, a Gompertztype curve has been fitted to the time series from 1962 to 1983, and extrapolated to 1990 as shown in Figure 4.6. 'Shis provides estimates of the size of the Ph.D. faculty in 1990 from which we can estimate the average annual demand due to expansion of faculty. The 95 percent confidence limits are used as the upper and lower bounds on this estimate.

FIGURE 4.6 Behavioral science Ph.D.s employed in colleges and universities, 1962-83. Solid line represents a growth curve of the form: \(Y=(K-C) \exp \left(\cdot e^{a-b t}\right)+C\) fitted to the data for 1962-83. Parameters derived from these 11 observations are: \(K=35,000 ; C=2,500\); \(a=1.73314 ; b=0.12466 ; R^{2}=0.997\). Curve has an inflection point at 1968. Broken lines represent \(95 \%\) confidence limits on the estimated curve. See Appendix Table CI2.

Additional demand is generated by attrition due to death, retirement, field-switching, and job changes. Estimates for these attrition rates are derived from the National Research Council's biennial Survey of Doctorate Recipients and are shown in Table 4.6. Because of expected increases in the age distribution of academically employed behavioral ph.D.s in the next few years (Appendix Table C24), we expect faculty attrition rates to increase. previously we have assumed a 1 percent per year attrition rate due to death and retirement through 1988. For projections to 1990, we use an attrition rate of 1.5 percent per year for death and retirement, and 3.5 percent per year (+0.5 percent) for other causes as suggested by the data in Table 4.6. The calculations are shown in Table 4.7.

TABLE 4.6 Inflows and Outflows from Academic Employment for Behavioral Science Ph.D.s, 1981-83
1. Average Annual Attrition from Academic Employment in the Behavioral Sciences 1981-83
1. Total behavioral science Ph.D.s employed in academia in 1981: 28,235
2. Leaving academic employment in the behavioral sciences each year to:
\begin{tabular}{lrr}
& N & \begin{tabular}{c}
\% of Academic \\
Employment
\end{tabular} \\
a. nonacademic sectors & 875 & 3.1 \\
b. postdoctoral appointments & 53 & \(\mathbf{0 . 2}\) \\
c. death and retirement & 338 & \(\mathbf{1 . 2}\) \\
d. unemployed & \(\underline{205}\) & \(\underline{5.7}\) \\
e. total attrition & &
\end{tabular}
II. Average Annual Accessions to Academic Employment in the Behavioral Sciences 1981-83
1. Total behavioral science Ph.D.s employed in academia in 1983: 29,776
2. Entering academic employment in the behavioral sciences each year from:
\begin{tabular}{|c|c|c|}
\hline Entin & N & \% of Total Accessions \\
\hline a. nonacademic sectors & 601 & 26.8 \\
\hline b. postdoctoral appointments & 107 & 4.8 \\
\hline c. unemplo \({ }^{\text {a }}\) d & 151 & 6.7 \\
\hline d. Ph.D. recipients 1981-82a & 1,164 & 51.9 \\
\hline e. other fields \({ }^{\text {b }}\) & 219 & 9.8 \\
\hline f. total annual accessions & 2,242 & 100.0 \\
\hline
\end{tabular}
III. Balancing: 1981 academic employment - attrition + accessions \(=1983\) academic employment
\(28,235-2(1,471)+2(2,242)=29,777 \mathrm{c}\)
\({ }^{a}\) Based on postdoctoral plans of Ph.D. recipients, it is estimated that \(\mathbf{1 5 \%}\) of these new Ph.D. cohorts took a postdoctoral appointment before taking an academic position.
\({ }^{b}\) These individuals were all academically employed in 1981 and 1983. The number shown represents the net number switching from nonbehavioral to behavioral fields.
c Does not agree with line II. 1 because of rounding.
SOURCES: National Research Council (1958-85, 1973-84).

TABLE 4.7 Projected Growth in Behavioral Science Ph.D. Faculty, 1983-90a
\begin{tabular}{|c|c|c|c|}
\hline & \(\stackrel{1}{\text { High Estimate }}\) & II
Middle Estimate & \begin{tabular}{l}
III \\
Low Estimate
\end{tabular} \\
\hline \begin{tabular}{l}
Expected size of behavioral science Ph.D. \\
faculty (F) in 1990
\end{tabular} & 32,930 & 32,740 & 32,530 \\
\hline Annual growth rate in F from 1983 to 1990 & 1.45\% & 1.36\% & 1.26\% \\
\hline Average annual increment due to faculty expansion & 450 & 420 & 390 \\
\hline Annual replacement needs due to: death and retirement \({ }^{b}\) other attrition \({ }^{c}\) & \[
\begin{array}{r}
470 \\
1,250
\end{array}
\] & \[
\begin{array}{r}
470 \\
\mathbf{1 , 0 9 0}
\end{array}
\] & \[
\begin{aligned}
& 470 \\
& 930
\end{aligned}
\] \\
\hline Expected number of academic positions to become available annually for behavioral science Ph.D.s & 2,170 & 1,980 & 1,790 \\
\hline
\end{tabular}
a Faculty in this table is defined as all academically employed Ph.D.s, excluding postdoctoral appointees, regardless of tenure status. These projections are based on the following relationship:
\(\left(F_{t}=(32,500) \exp \left(-e^{1.73314-0.012466 t}\right)+2,500\right.\), where \(F=\) size of behavioral faculty in year \(t\). See Appendix Table C12.
\({ }^{\delta}\) Based on an estimated annual replacement rate of \(1.5 \%\) due to death and retirement.
c Based on high, middle, and low attrition rates of \(\mathbf{4 \%}, \mathbf{3 . 5 \%}\), and \(3 \%\), respectively.

The best estimate of behavioral science Ph. D. faculty size in 1990 is 32,740 , an increase of 420 positions per year from the 1983 level of 29,780. Attrition due to death and retirement would add 470 positions, and other attrition would add another l,090. Total annual demand expected under these assumptions is 1,980 positions. An upper bound 2,170 is derived from using attrition rates of 4.0 percent per year for "other causes." A lower bound of 1,790 is computed using an attrition rate of 3.0 percent per year for "other causes."

\section*{ESTIMATING PREDOCTORAL AND POSTDOCTORAL SUPPORT LEVELS UNDER NRSA PROGRAMS}

The next step in our quantitative analysis of the market is to attempt to translate the projections of academic demand into recommended levels of postdoctoral training under NRSA programs. This step requires certain additional assumptions about how the system has functioned in recent years with regard to postdoctoral training and its sources of support.

\section*{Postdoctoral Training Levels}

The features of the postdoctoral training system which must be considered in addition to the projections of faculty growth and attrition are shown in Table 4.8 and are described as follows:
1) The number of accessions to academic positions who have (or should have) postdoctoral research training, (line 2). We estimate that 20 percent of all vacancies will be filled by former postdoctoral trainees. In the best-guess case, this number is estimated to be about 400 .

TABLE 4.8 Estimated Number of Behavioral Science Postdoctoral Trainees Needed to Meet Expected Academic Demand Through 1990 Under Various Conditions
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|c|}{Projected 1983-90} & \multirow[t]{2}{*}{Annual A verage 1981-83} \\
\hline & \begin{tabular}{l}
High \\
Estimate
\end{tabular} & \begin{tabular}{l}
Middle \\
Estimate
\end{tabular} & Low Estimate & \\
\hline 1. Academic demand for behavioral science Ph.D.s-annaal average: & 2,170 & 1,980 & 1,790 & 2,241 \\
\hline a. due to expansion of faculty & 450 & 420 & 390 & 770 \\
\hline b. due to death and retirement \({ }^{\text {a }}\) & 470 & 470 & 470 & 338 \\
\hline c. due to other attrition \({ }^{\text {b }}\) & 1,250 & 1,090 & 930 & 1,133 \\
\hline 2. Total vacancies filled by individuals with postdoctoral research training—annual average: \(\boldsymbol{c}\) & 430 & 400 & 360 & 110-285 \({ }^{\text {d }}\) \\
\hline 3. Size of behavioral science postdoctoral pool-annual average & & & & \\
\hline Size needed to meet academic demand assuming a 2-yr. training period and portion of trainees seeking academic positions is: & & & & 1,005 \\
\hline a. \(60 \%\) & 1,430 & 1,330 & 1,200 & \\
\hline b. \(70 \%\) & 1,230 & 1,140 & 1,030 & \\
\hline 4. Annual number of behavioral science postdoctoral trainees to be supported under NRSA programs: & & & & 365 (1981-82) \\
\hline a. if \(\mathbf{4 0 \%}\) of pool is supported under NRSA & 490-570 & 460-530 & 410-480 & \\
\hline b. if \(\mathbf{5 0 \%}\) of pool is supported under NRSA & 620-720 & 570-670 & 520-600 & \\
\hline c. if \(60 \%\) of pool is supported under NRSA & 740-860 & 680-800 & 620-720 & \\
\hline
\end{tabular}
a Assumes annual attrition rate due to death and retirement of \(\mathbf{1 . 5 \%}\).
\({ }^{b}\) Assumes high, middle, and low annual attrition rates due to other causes of \(\mathbf{4} \%, \mathbf{3 . 5 \%}\), and \(3 \%\), respectively.
c Assumes that \(20 \%\) of all vacancies will be filled by individuals with postdoctoral research training in the behavioral sciences. \({ }^{d}\) Assumes that \(15 \%\) of the 1981-82 Ph.D. cohorts took a postdoctoral appointment before taking an academic position. See Table 4.6.
2) The appropriate length of the postdoctoral research training period and the propurtion of trainees who aspire to research careers (line 3). If the appropriate length is 2 years, then the pool size needed to produce 400 trained scientists each year would be 800. If only 60 percent of the trainees seek academic appointments after completing their training, then the necessary pool size must be l,330.
3) The proportion of support of the total pool of behavioral science postdoctoral appointments that should be provided by the federal government (line 4). We are assuming a range between 40 and 60 percent. The resulting range of NRSA postdoctaral trainees is between 410 under the lowest set of assumptions, and 860 under the highest set. The bestguess assumptions yield a range of 460-800 postdoctoral trainees in the behavioral sciences.

\section*{Predoctoral Training Levels}

This analysis of the training system may also be extended to graduate education in the behavioral sciences and the level of predoctoral support under NRSA programs. The size of the postdoctoral pool needed to satisfy academic demand under specified conditions was computed in Table 4.8 (line 3) to be between 1,140 and 1,330 in the best-guess case. This becomes the basis for estimating NRSA predoctoral support levels as shown in Table 4.9.

If the training system requires a postdoctoral appointment of two years duration, then between 570 and 665 postdoctoral trainees would be expected to leave the pool each year (Table 4.9, line 2). To maintain a stable system, the number of Ph.D.s entering the postdoctoral pool each year would have to equal the attrition. And if the number of Ph.D.s who seek postdoctoral appointments is between 14 and 16 percent of each sohort, then the annual \(\mathrm{Ph} . \mathrm{D}\). production rate must be between 3,560 and 4,750 (line 3).

The ratio of Ph.D.s granted to graduate enrollments in behavioral fields has varied in a narrow range between 6 and 8 percent since 1960. If this ratio holds for the next few years, graduate enrollments would have to be between 44,500 and 79,200 (line 4).

The percentage of graduate enrollments that receives predoctoral support from NRSA programs is small--currently around 1 percent. To maintain the system at this level, 450 to 790 predoctoral trainees in the behavioral sciences would be needed each year (line 5).

TABLE 4.9 Estimated Number of Behavioral Science Predoctoral Trainees to be Supported Under NRSA Programs
\begin{tabular}{|c|c|c|}
\hline & Projected
1983-90 & \[
\begin{gathered}
\text { Actual } \\
1983 \\
\hline
\end{gathered}
\] \\
\hline 1. Estimated number of postdoctoral trainces needed to satisfy demand under the committec's most likely estimate (from Table 4.8) & 1,140-1,330 & 1,039 \\
\hline 2. Annual attrition from postdoctoral pool if average length of appointment is 2 years & 570-665 & 520 \\
\hline 3. Number of Ph.D.s needed each year to maintain postdoctoral pool level if percentage of Ph.D.s seeking a postdoctoral appointment is: & & \\
\hline \begin{tabular}{l}
a. \(14 \%\) \\
b. \(16 \%\)
\end{tabular} & \[
\begin{aligned}
& 4,070-4,750 \\
& 3,560-4,160
\end{aligned}
\] & 4,318 \\
\hline 4. Average graduate enrollment needed to produce the required number of Ph.D.s if annual completion rate is: \({ }^{a}\) & & \\
\hline \begin{tabular}{l}
a. \(6 \%\) \\
b. \(8 \%\)
\end{tabular} & \[
\begin{aligned}
& 59,300-79,200 \\
& 44,500-59,400
\end{aligned}
\] & 63,500 \\
\hline 5. Annual number of NRSA predoctoral traineeships needed if \(\mathbf{1 \%}\) of graduate students are supported under NRSA programs & 450-790 & 516 (1982) \\
\hline
\end{tabular}
\({ }^{a}\) The completion rate is defined here as the ratio of Ph.D.s awarded to graduate enrollments in a given year. This ratio has varied in a narrow range generally between 0.06 and 0.08 since 1960. See Appendix Tables C1 and C10.

SOURCES: Table 4.7, Appendix Tables C1 and C10.

\section*{SUMMARY}

Apart from nonclinical psychology, in which there has been a small reduction, behavioral science Ph.D. faculty size has continued to increase throughout the 1970 s and early 1980s. This is not due to a general increase in faculty size--total behavioral science faculty (including non-Ph.D.s) leveled off around 1977-bbut to an increase in the Ph.D. portion at the expense of those without doctorate degrees. The percentage of behavioral science faculty with doctorate degrees increased from 57 percent in 1966 to 79 percent in 1983.

Projections to 1990 indicate that this growth in Ph.D. faculty positions will continue, but at a slower pace. Judging from the age distribution of the faculty, attrition due to death, retirement, and other reasons is expected to accelerate toward the end of this decade. A portion of the vacancies created by expansion and replacement should be filled by behavioral scientists with some postdoctoral training experience. The fraction of faculty accessions
with such experience is currently small, but the committee has recommended that it be increased. If we assume that 20 percent of newly hired behavioral science faculty members should have postdoctoral training, then the appropriate level of NRSA postdoctoral training in the behavioral sciences for the 1988-90 period should be in the range of 460-800 trainees and fellows annually. The committee's last recommendations for postdoctoral training in the behavioral sciences were for 440 trainees in 1985, rising to 540 in 1987.

Similarly, to maintain the current structure of the system, a number of predoctoral awards should be provided. Currently in the behavioral science fields about 1 percent of graduate scudents receive support from NRSA programs. If the system is maintained at this level, \(450-790\) predoctoral training awards should be made available annually during the period 1988-1990.

\title{
5. Health Services Research
}

\begin{abstract}
Health services researchers have contributed to the understanding of factors affecting the effectiveness of health care, including methodological advances in the measurement of health status and in the conceptual underpinnings of cost-benefit and costeffectiveness analysis. These efforts at quantification are relevant to the problems of constraining the rapid growth of health care costs and assessing the consequences of new forms of health care delivery.

Support for health services research comes from diverse private, as well as government, sources. Philanthropic foundations have been a major source since the 1920s when the Committee on the Costs of Medical Care conducted studies of the incidence of disease, family expenditures for health services, incomes of physicians, an facilities for the provision of health services. Foundations with major health activities such as Robert Wood Johnson, Kaiser Family, Kellogg, and Hartford continue to provide support for the field. Rescarch activities also are supported by professional societies and private business. Federal support of health services research has its principa. focus in the National Center for Health Services Research and Health Care Technology Assessment, the Office of Research and Demonstrations of the Health Care Financing Administration, and the Veterans Administration. However, research programs and projects whose substance is health services resedrch, but that are not identified as such, occur in IIIH, the Department of Defense, and elsewhere in the federal government. State agencies for health and social services use the methodologies of health services research or contract with consultants and university-based researchers to evaluate healt.! care practices within their jurisdiction. Efforts are needed to obtain systiematic information on all public and private funds supporting health services research. Total federal expenditures were estimated to be \(\$ 183\) million in 1985; these expenditures are increasing but remain small rel.ative to federal expenditures for biomedical \(R\) and \(D\).
\end{abstract}

Unlike the behavioral, biomedical, and clinical sciences, data are not available that permit the committee to make quantitative estimates of the current supply of health services research personnel nor that support projections of future supply or demand. A much better base of knowledge is needed on the training, employment, and research activities of health services researchers, and on the funding of health services research.

\section*{DEFINITION AND EXAMPLES OF CURRENT HEALTH SERVICES RESEARCH}

Health services research is a field of inquiry that addrecies the structure and functioning of the health care delivery system. It is not a discipline in the sense of biochemistry or psychology, but rather a problem area in which are applied the theories and methods of the social and behavioral sciences, epidemiology, economics, biostatistics, and operations research. Some health services research is directly rei.evant to the evaluation of health programs and the development of health policy. Other research is focused on technology assessment or more theoretical studies addressing such issues as the optimal organization of health care delivery systems. still other research has the aim of developing and improving data and methods for studying health services delivery.

Investigators in this field employ a variety of ressearch methods. Depending on the disciplinary background of the investigator and the aims of the research, a project might utilize, e.g., case analysis and randomized trials (medicine), interviews or questionnaire surveys (social sciences), observation studies (anthropology), empirical testing of theoretical models (economics), or experimental or quasiexperimental studies (behavioral sciences). Analytic techniques are drawn from biostatistics, epidemiology, econometrics, and statistics. Health services researchers also have developed research methods, of which health status measures (discussed below) constitutes an important example, and have made significant contributions to the development of cost-benefit and cost-effectiveness analysis.

Health services researchers examine the influence of health care organization, methods of delivery, and health care financing on the quality, costs, and accessibility of health services. They also examine the development and deployment of health manpower. Ultimately their concern is with problems involved in the financing and provision of health services and with improving the effectiveness of those services as measured by improved treatment outcomes.

Such lines of inquiry take on special importance during periods of major change in health care. The past two years have witnessed rapid and profound changes such as the institution of prospective payments for hospital payments by Medicare, the rapid growti of for-profit health care, the adoption of business-oriented goais by many health care providers, and the limitation of Medicaid patients' choices of providers by some states. Major employers such as General Motors have drastically changed their employee health insurance benefits to encourage prudent use of health care resources. Physicians have started to form Preferred Provider Organizations and to enter other new organizational arrangements such as free-standing surgical centers. These
changes have occurred within a context of the continued proliferation of medical technology, a greatly enlarged physician supply, and the increasing rate of growth in the nation's elderly population.

Investigators in this field have made significant contributions to knowledge about the structure and function of the health system and have deveioped research tools to assess its effectiveness. Over the past 20 years, for example, substantial progress has been made in the development of measures and indices of health status. \({ }^{1}\) Investigators garors have developed aggregate indexes based on population mortality and morbidity. They also have developed measures that combine mozbidity and mortality to construct a quality-adjusted life expectancy. These measures provide the means for monitoring health status in local, regional, or national populations. As an adjunct to economic measures such as per capita income or unemployment rates, heand \(t_{1}\) status measures provide indicators of population well-being.
f:dividual health status measures also have been developed. For example, Katz and his colleagues at the Benjamin Rose Hospital developed the index of Activities of Daily Living (ADL), a measure of patients' functional independence or dependence designed to study results of treatment and prognosis in the elderly and chronically ill (Benjamin Rose Hospital Staff, 1959). More recently, investigators have developed measures that encompass a much broader range of physical, social, and psychological functioning (Brook, et al., 1979). Even more subtle measures of health status are being introduced with the concept of individual preferences for specific health states or health outcomes (Lipscomb, 1982). Such measures are essential to the evaluation of health programs, the assessment of the effectiveness of alternative delivery modess and the analysis of the outcomes of medical practice. This area of research continues to be important as the federal government, the states, and the private sector act to constrain the rate of growth in health care expenditures and new forms of health care delivery emerge that increase the need for tools with which to analyze the consequences.

\section*{Health Maintenance Organizations and Health Care Costs}

Since the 1950 s, health services researchers have made extensive study of Health Maintenance Organizations (HMOs) \({ }^{2}\) to test the

\footnotetext{
\({ }^{1}\) This discussion draws heavily on Bergner (1985) and Ware (1985).
\({ }^{2}\) The Health Maintenance Organization (HMO) provides a range of services to a defined population for a fixed annual or monthly payment. This form of medical care delivery, in contrast to fee-for-service, contains financial incentives to perform fewer services and to emphasize health promotion and disease prevention. Its proponents argue that, because of these incentives, the HMO offers the possibility for substaniial cost savings in health care delivery (Luft, 1978). Since 1973, the federal government has encouraged the development of HMOs with the dual objectives of (a) reducing costs through the widespread enrollment of a substantial fraction of the population in prepaid plans and (b) lowering costs more generally by competing with conventional insurers.and providers (Luft, 1985).
}
hypothesis that HMOs offer care at lower cost and to identify the sources of cost differences between HMOs and other providers. Much of this work has found lower per capita costs in HMOs than under conventional health insurance, although the evidence is much stronger for group-practice HMOs than for independent practice associations (IPAs) \({ }^{3}\) (Luft, 1985). Lower hospital utilization has been shown to account for most of the difference. Enrollees in group practice HMOs have hospital utilization rates (days \(/ 1,000\)) about 30 percent less than those of comparison groups. The lower rates are due to fewer admissions rather than shorter lengths of stay (Luft, 1978, p. 1339). However, the possibility that healthier individuals choose HMOs could not be ruled out on the basis of these nonexperimental studies. This issue of self-selection has been addressed in two studies. A 1976 study compared the costs of providing services to members of a St. Louis НMO and a matched group who received care under fee-for-service and found similar rates of surgical utilization, significantly lower rates of non-surgical and overall utilization, and much higher rates of ambulatory utilization in the HMO members (Perkoff, 1976). More recently, investigators at the Rand Corporation compared utilization among persons in Seattie who were randomly assigned to one of three health plans: a free fee-for-service plan, a fee-for-service plan with copayments, and free care in the Group Health Cooperative of Puget Sound (GHC). A random sample of voluntarily-enrolled GHC patients also was analyzed. The assigned GHC group had a somewhat higher rate of hospital utilization than the GHC control group (49 days per 100 compared with 38 days per 100); however, imputed annual expenditures per enrollee were very similar for these two groups (Manning, et al., 1984). Whether assigned or voluntary, GHC enrollees had a rate of hospital admissions that was 40 percent less than the randomly assigned fee-for-service group. These findings suggest that self-selection has not markedly biased the results of earlier, nonexperimental studies and lend support to the group-practice model HMO as a lower-cost alternative to traditional methods of health care delivery.

\section*{Health Status and Medical Care Utilization}

Expenditures for health care have grown enormously over the past 20 years. Between 1965 and 1983, current dollar expenditures grew almost tenfold. Adjusting for inflation, they more than doubled. Since the 1970s Victor Fuchs and others have called into question whether this increase has translated into better health for the American people. Not only have mortality and morbidity rates appeared not to be declining commensurate with the growth in national health care expenditures, but age-specific mortality rates in this country have compared unfavorably with other developed countries with lower per capita health expenditures. A major theme of Fuchs' book Who

\footnotetext{
\({ }^{3}\) In an IPA, a physician group is paid on a capitation basis, but individual physicians are paid fee-for-service.
}

Shall Live was that--except for the very poor--"life-style" factors such as diet, exercise, smoking, and automobile driving were the major determinants of health and that therefore the marginal benefit from an additional dcilar bpent on health care was very small (Fuchs, 1974).

Investigations in the field of health services research have attempted to erjimate statistically the relative contributions to health status made by health care and other factors. This issue is of great importance to policy deliberations because there is a range of strategies available for improving health-ee.g., increasing the availability and accessibility of health services, encouraging health-enhancing behaviors (or discouraging health-detracting behaviors), improving environmental quality, and increasing job safety-and resources are constrained. In a 1969 study using state data, researchers found that a 1 percent increase in medical care expenditures per capita was associated with a small (0.1 percent) decrease in age-sex-adjusted mortality for whites (Auster, et al., 1969). Subsequent research (Silver, 1972) also suggested that medical care utilization exercised a negligible effect on mortality rates. However, a recent major study of small areas found higher health expenditures per capita to be associated with significantly lower mortality (Hadley, 1982).

\section*{SOURCES OF FUNDING FOR HEALTH SERVICES RESEARCH}

\section*{Non-government Sources}

From its inception in the 1920s, the field of health services research has received significant support from the private sector. Eight philanthropic foundations \({ }^{4}\) supported the landmark work of the Committee on the Costs of Medical Care (1927-1932), which can be considered the principal origin of health services research in this country. The work of this committee included community surveys and other field studies aimed at producing a comprehensive picture of the incidence of disease and disability in the population, family expenditures for health services, the numbers and incomes of physicians and other service providers, and existing facilities for the provision of health services. This was the first time that such an ambitious attempt was made to establish a factual base for a broad consideration of health policy (Anderson, 1967, p. 19).

Foundations such as the Robert Hood Johnson Foundation, the Kaiser Family Foundation, the Hartford and Kellogg Foundations, continue to play an important role in the support of health services research. They have funded the work of major commissions whose work has included original research. They also have supported innovative health care programs as well as evaluation research to assess their effectiveness.

\footnotetext{
"The Carnegie Corporation, Josiah Macy, Jr. Foundation, Milbank Memorial Fund, New York Foundation, Rockefeller Foundation, Julius Rosenwald Fund, Russell Sage Foundation, and the Iwentieth Century Fund.
}

They have funded pioneering investigations in medical care at universities and provider organizations. In 1976, the contribution of foundations to health service research was estimated at over \(\$ 26\) million.

Major professional associations support health services research in several ways; they collect, process, and disseminate data on their members which then serves as a resource for research by their own research staff members and by academic investigators. Major examples are the American Medical Association's Physician Masterfile and the data on hospital characteristics maintained by the American Hospital Association. Medical specialty societies have undertaken research on medical care quality and methods of assessing medical care. The American College of Surgeons (ACS), for example, developed a system for evaluating hospital surgical programs as early as 1918 (Flook, 1973, p. 100). More recently, the ACS and the American Surgical Association jointly conducted a major study of surgical services and surgical manpower in the United States. The well-known sossus study documented, among other things, the large number of non-surgeons performing surgery and.the excessive numbers of physicians choosing surgical residencies (ACS and ASA, 1975, PP. 83-85). In another instance, the American College of Radiology, with the support of NCHSR, conducted a pioneering study (1977) assessing the extent to which diagnostic radiologic procedures influenced medical decision-making.

Industry involvement in health services research is increasing. The Blue Cross-Blue Shield Association, for example, supports research on health services utilization and financing. Large investor-owned health care firms such as the Hospital Corporation of America are providing funding for research in health care administration.

\section*{Government Sources}

Significant involvement in health services research by the federal government dates from the 1930s. The first Health Interview Survey, covering over 700,000 households, was conducted by the Public Health Service in the winter of 1935-1936. Data from this survey, which continues to the present, were used by PHS staff to study aspects of the organization, financing, and evaluation of health services over a decade (Flook, 1973, p. 103). Several researchers who served on the staff of the Committee on the Costs of Medical Care subsequently joined the Social Security Administration's Office of Research and Statistics (Fox, 1979, p. 29). \({ }^{5}\) This office developed estimates of national expenditures for health and became the principal locus for intramural and extramural research on the economics of health care.

\footnotetext{
\({ }^{5}\) Agnes Brewster, I. S. Falk, Margaret Klem, and Louis Reed. This activity was first headed by Ida C. Merriam, the Assistant Commissioner for Research and Statistics.
}

\section*{The National Center for Health Services Research and} Health Care Technology Assessrnent

The National Center for Health Services Research was established in 1968 with an explicit mandate to support health services research and research training. \({ }^{6}\) Since its inception, the center has maintained an extensive program of extramural and intramural research and supported the training of researchers. Through these programs the Center "...seeks to create new knowledge and better understanding of the processes by which health services are made available and how they may be provided more efficiently, more effectively, and at lower cost" (NCHSR and HCFA, 1985). NCHSR is the primary source of federal support for research on problems related to the quality and delivery of health services.

The NCHSR extramural program provides support for investigatorinitiated projects in health services research conducted at universities, nonprofit organizations and institutions, and by industry. Priority areas for 1985 include:
(1) Health promotion and disease prevention: health status measurement, organization, and provider studies, analysis of public and private program interventions, and methods to increase consumer knowledge and change health attitudes and behavior.
(2) Technology assessment: studies of the safety, efficacy, effectiveness, and cost effectiveness of specific technologies, development of new methods for evaluating medical technologies, and diffusion of medical technology.
(3) The role of market forces in the delivery of health care: market and industry structure, expenditure studies, strategies to enhance cost consciousness, and productivity studies.
(4) Primary care: development and testing of better designs, measures, and analytic techniques to improve primary care research; evaluation and surveillance techniques to assess the quality of care and the effectiveness of health promotion and disease prevention efforts, studies of the medical decision-making process; and systematic evaluations of the effectiveness and costs of clinical care.

\footnotetext{
\({ }^{6}\) Section 304 of the Partnership for Health Amendments of 1967 authorized support for research, experiments, and demonstrations related to the "Development, utilization, quality, organization, and financing of services, facilities, and resources" (Sanazaro, 1973, p. 152).
}
(5) State and local health problems: improving data and methods for projecting the demand for service and related supply requirements, and forecasting health expenditures, studies to develop and evaluate decision models for allocating health care resources at various jurisdictional levels and among various programs in a cost-effective manner; and techniques to assess and project the impact of changes in health expenditures (NCHSR, 1984b).

In its intramural research program the Center emphasizes four major health care issues. The Hospital Studies Program examines how competition, reimbursement systems, and various types of regulation influence the use and costs of hospital care. The Health Services for the Aged Studies Program evaluates the impact of different reimbursement approaches on the admission practices and services of nursing homes, the feasibility of private, long-term care insurance, and the contribution of informal support systems for the elderly. The National Health Care Expenditures Study, using information from a large national survey, examines how Americans use and pay for health care services. The Health Status and Health Promotion Studies Program focuses on measuring the level of health and on evaluating strategies to modify behavioral practices that have an adverse impact on health status.

The National Medical Care Expenditure Survey, conducted in 1977, has provided a rich source of data yielding significant findings on the utilization of health care and how families finance their health care. This survey included interviews in approximately 14,000 households, complemented by additional surveys of physicians and health care facilities providing care to household members during 1977 and of employers and insurance companies about their insurance coverage. On the basis of data from the survey it has been estimated that three of every 10 dollars spent for health care are accounted for by persons whose activities are limited by chronic conditions, although these persons represent only 10 percent of the population. The Medicare and Medicaid programs pay a large share of their health care costs, including about half of their hospital care (NCHSR, 1984a). These data also have been used to estimate the proportion of the insured population that is underinsured, that is, that could face significant out-of-pocket expenses over and above their insurance coverage. For approximately five percent of the privately insured population under age 65, expected out-of-pocket expenses could exceed three percent of income (Farley, 1984). These estimates highlight the large number of Americans who face substantial financial risk because they are uninsured for all or part of a year, or because their health insurance is not sufficient to cover certain expenses for which there is an appreciable statistical expectation.

Center-funded research also has made significant contributions to the knowledge base for the design, implementation, and evaluation of Medicare prospective payment, including early support of efforts by Yale researchers to develop diagnostic groups that are homogeneous with respect to hospital resource use and continued efforts to improve measures of case mix/case severity. Research funded by NCHSR also
 of care and access to care.

Annual research appropriations for the Center have leveled at approximately \(\$ 15\) million after declining for a number of years (Table 5.1). In real terms, this represents a decline of 67 percent since 1976. A small amount is allocated for the support of dissertation research. Between 10 and 20 grants of up to \(\$ 20,000\) are made annually to promising students whose dissertation topics are within Center priority areas. At present the Center has no other program for training of health services research personnel.

TABLE 5.1 Annual Research Appropriations for the National Center for Health Services Research, FY 1976-86 (\$ millions)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Fiscal \\
Year
\end{tabular}} & \multicolumn{2}{|c|}{Research Appropriations} & \multirow[t]{2}{*}{Implicit GNP Price Deflatora \((1972=100.0)\)} \\
\hline & Current \$ & 1972 \$ & \\
\hline 1976 & \$26.0 & \$19.4 & 133.90 \\
\hline 1977 & 24.0 & 16.9 & 141.70 \\
\hline 1978 & 26.1 & 17.2 & 152.05 \\
\hline 1979 & 26.1 & 15.8 & 165.46 \\
\hline 1980 & 22.4 & 12.6 & 178.42 \\
\hline 1981 & 21.5 & 11.0 & 195.14 \\
\hline 1982 & 14.3 & 6.9 & 206.88 \\
\hline 1983 & 14.6 & 6.8 & 215.63 \\
\hline 1984 & 15.7 & 7.0 & 223.43 \\
\hline 1985 & 14.8 & 6.4 & 232.29 \\
\hline 1986 (proposed) & 14.7 & n/a & n/a \\
\hline
\end{tabular}
\({ }^{a}\) From the U.S. Bureau of the Census. The deflator for 1985 represents the third quarter.
SOURCE: National Center for Health Services Research.

Health Care Financing Administration (HCFA)
As the agency responsible for managing Medicare, Medicaid, the End Stage Renal Disease Program, professional review, and their accompanying statistical and monitoring activities, HCFA, through its Office of Research and Demonstrations (ORD), supports research and demonstrations related to these responsibilities. Research areas include hospital payment, physician payment, long-term care, home health care, and alternative payment systems. In addition, this office supports program analysis and evaluation, including the development and analysis of program data and data from major health surveys, review of state Medicaid programs' management information needs, and the compilation and dissemination of state nealth activities (HCFA, 1984).

To support and extend the activities of HCFA, it supports two health policy centers. The Brandeis University Health Policy Research Consortium, which includes the Boston University School of Medicine, the Center for Health Economics Research, and the Urban Institute conducts a broad array of analytic activities and recently has assisted the Office of Research in responding to a Congressional mandate for reports on the Medicare prospective payment system (P.L. 98-21). A second center at The Rand Corporation/University of California, Los Angeles, primarily is providing expert consultation to ORD in planning, implementing, and evaluating demonstrations and experiments. This center also is supporting the analytic activities of the Office of Research in response to Congress.

The enactment of prospective payment for hospital services represented a radical departure from historical methods of paying for hospital care. However, this legislation (P.L. 98-21) was based on research, demonstrations, and evaluations over a period of more than ten years. Most of this painstaking work was supported by HCFA. In the late 1970's ORD funded the development by researchers at Yale of Diagnosis-Related Groups, a classification scheme comprised of subgroups of patients that have similar clinical attributes and resource utilization patterns (Fetter, et al., 1980). The algorithm that was developed grouped patients in a manner that minimized within-group variation in length of stay while keeping the number of groups to a manageable level. HCFA also funded a demonstration of the use of per-case payment for hospital care under Medicare in the state of New Jersey using DRG's to define cases. All general acute care hospitals in the state were phased into the demonstration, starting in 1980. All hospital patients in the state and all third-party payers were included (HCFA, 1984). Preliminary results from this demonstration formed the basis for a 1982 report to Congress on prospective payment under Medicare that led to the adoption of prospective payment in 1983. The ORD budget for research and demonstrations was \(\$ 34\) million in 1985 (Table 5.2), approximately evenly divided between research and demonstrations. In enacting prospective payment Congress called for HCFA to conduct studies and deliver a number of reports on the implementation and effects of this major change in payment for hospital services, as well as a report on the advisability and feasibility of incorporating physician payments into prospective payment. Fulfilling these Congressional mandates currently occupies about 30 to 40 percent of HCFA's research and demonstration resources.

\section*{National Institutes of Health}

While NIH does not separately identify grants for health services research, such research activity can be found in a number of institutes, primarily in comprehensive centers and control programs for cancer, diabetes, arthritis, and cardiovascular and pulmonary diseases (IOM, 1979). The NIH biennially compiles information on federal obligations for the conduct of health research and development

TABLE 5.2 Research and Demonstrations Budget for the Health Care Financing Administration, FY 1979-86 (\$ millions)
\begin{tabular}{lcr}
\hline & \multicolumn{2}{c}{ Budget } \\
\cline { 2 - 3 } Fiseal & & \\
Year & Current \(\$\) & \(1972 \$\) \$ \\
\hline 1979 & \(\$ 32.5\) & \(\$ 19.6\) \\
1980 & 46.8 & 26.2 \\
1981 & 38.9 & 19.9 \\
1982 & 29.5 & 14.3 \\
1983 & 30.0 & 13.9 \\
1984 & 33.1 & 14.8 \\
1985 & 34.0 & 14.6 \\
1986 (proposed) & 34.0 & \(\mathrm{n} / \mathrm{a}\) \\
\hline
\end{tabular}
\(a\) Deflated by the GNP Priee Deflator, \(1972=100.0\). See Table 5.1.
SOURCE: Offiee of the Direetor, Offiee of Researeh and Demonstrations, HICFA.
(biomedical \(R\) and \(D\), health services \(R\) and \(D\), and other health-related \(R\) and \(D\)) that are reported in NIH publications and to Congress (NIH, 1983b).' In developing the information on its own health servirns research activities, NIH employs a keyword analysis of its computerbased CRISP system. For FY 1985, NIH obligations for health servives research were estimated at \(\$ 42.3\) million (Table 5.3). This amo:." s risen steadily since 1979.

\footnotetext{
\({ }^{7}\) The instructions for reporting that are provided to federal agencies employ the following definition for health services \(R\) and \(D:\)
}

The structure, processes, and effects of health services, and development and use of health resources. Examples of areas to be included are: (a) analysis of the organization, delivery, and impact of health promotion and disease prevention activities; (b) analysis of the factors underlying the increase in health care costs and the structural reforms and incentives which might modify these; (c) analysis of the implications of various health insurance and financing initiatives; (d) analysis of health manpower, such as education, requirements, distribution, utilization, and development (but excluding the actual training of such manpower); (e) analysis of technology-based approaches to modify the organization and delivery of health care services, with special emphasis on the uses of computer science and medical and information systems (excluding research on the effectiveness of diagnostic and therapeutic technologies); (f) relationship between the health services provided, and the health of the population; (\(g\)) analysis of emergency medical service system; (h) \(R\) and \(D\) on portable field units for emergency care, including adaptation of design and instruments for specific use; (i) analysis of long-term care servises; (\(j\)) evaluation of health services \(R\) and \(D\).

TABLE 5.3 NIH Obligations for Health Services Research and Development, FY 1977-85a (\$ millions)
\begin{tabular}{lcc}
\hline & \multicolumn{3}{c}{ Obligations } \\
\cline { 2 - 3 } Fiscal & & \\
Year & Current \(\$\) & 1972 \$b \\
\hline 1977 & \(\$ 7.4\) & \(\$ 5.2\) \\
1978 & 11.6 & 7.6 \\
1979 & 30.3 & 18.3 \\
1980 & 32.3 & 18.1 \\
1981 & 37.3 & 19.1 \\
1982 & 37.3 & 18.0 \\
1983 & 39.7 & 18.4 \\
1984 & 41.0 & 18.4 \\
1985 & 42.3 & 18.2 \\
\hline
\end{tabular}
\({ }^{a}\) See footnote 7 for definition of Health Services R\&D. The FY 1985 figure is based on President's budget request.
\({ }^{b}\) Deflated by the GNP Price Deflator, \(1972=100.0\). See Table 5.1.
SOURCE: National Institutes of Health.

\section*{Other Federal Sources}

The National Center for Health Statistics, the primary agency for the production of national general purpose health statistics, conducts surveys and inventories that form the basis of both descriptive and analytic studies. The center also conducts research to enhance the quality of survey data and improve estimation methods. Other agencies of DHHS that fund health services research are the Alcohol, Drug Abuse and Mental Health Administration, the Health Resources and Services Administration, the Office of the Assistant Secretary for Health, and the Office of the Assistant Secretary for Planning and Evaluation. Outside DHHS, health services research is funded by the Department of Defense, the Department of Education, the International Development Cooperation Agency (AID), and the Veterans Administration. Estimated total federal obligations for health services research for 1985 were \(\$ 183\) million \({ }^{\circ}\) (Table 5.4).

As the information presented above indicates, a diversity of sources fund health services research, including foundations and industry as well as government. The major focal points for health services research in the federal government are the National Center for Health Services Research and the office of Research and Demonstrations of the Health Care Financing Administration. The Veterans Administration also conducts a small health services research program. However, programs whose substance is health services research --but which are not called health services research--occur in other government offices and agencies. In order that this committee and others can properly assess historical trends in funding for health services research and to assess the outlook for its future funding,

\footnotetext{
\({ }^{8}\) In comparison, biomedical R and D obligations were over \(\$ 5.6\) billion.
}

TABLE 5.4 Federal Obligation : (\$ thousands)
\begin{tabular}{|c|c|c|c|c|}
\hline Agency & Total & \[
\begin{gathered}
\text { Blomedical } \\
\text { R\&D }
\end{gathered}
\] & Health Services R\&D & Other Health. Related R\&D \\
\hline TOTAL, All Agencies & 6,274,776 & 5,615,477 & 183,177 & 476,122 \\
\hline Dept. of Health and Human Services, Total & 4,930,294 & 4,720,833 & 128,166 & 81,295 \\
\hline National Institutes of Health & 4,345,429 & 4,303,159 & 42,270 & - \\
\hline Other Public Health Service Agencies, Total & 541,865 & 417,674 & 43,191 & 81,000 \\
\hline Alcohol, Drug Abuse, and Mental Health Admin. & 355,563 & 332,792 & 22,771 & - \\
\hline Centers for Disease Control & 83,982 & 83,982 & - & - \\
\hline Food and Drug Admia. & 81,000 & - & - & 81,000 \\
\hline Health Resources and Services Admin. & 3,920 & 900 & 3,020 & - \\
\hline Office of the Assistant Secretary for Health (including NCHS and NCHSR) & 17,400 & - & 17,400 & - \\
\hline Other DHHS, Total & 43,000 & - & 42,705 & 295 \\
\hline Health Care Financing Admin. & 35,000 & - & 35,000 & \\
\hline Office of the Secretary & 8,000 & - & 7,705 & 295 \\
\hline Other Agencies, Total & 1,344,482 & 894,644 & 55,011 & 394,827 \\
\hline Dept. of Agriculture & 147,558 & 27,417 & 296 & 119,845 \\
\hline Dept. of Commerce & 4,073 & 733 & - & 3,340 \\
\hline Dept. of Defense, Total & 473,059 & 410,351 & 13,340 & 49,368 \\
\hline Dept. of the Army & 332,499 & 273,396 & 12,016 & 47,087 \\
\hline Dept. of the Navy & 69,570 & 67,113 & 176 & 2,281 \\
\hline Dept. of the Air Force & 50,059 & 50,059 & - & - \\
\hline Defense Agencies and Service Schools & 19,383 & 19,383 & - & - \\
\hline Other DOD & 1,548 & 400 & 1,148 & - \\
\hline Dept. of Education & 30,821 & - & 30,821 & - \\
\hline Dept. of Energy & 178,116 & 106,942 & - & 71,174 \\
\hline Dept. of the Interior & 16,977 & - & - & 16,977 \\
\hline Dept. of Labor & 5,075 & - & - & 5,075 \\
\hline Dept. of Transportation & 7,924 & 7,268 & - & 656 \\
\hline Consumer Product Safety Commission & 709 & 466 & - & 243 \\
\hline Environmental Protection Agency & 51,295 & 30,777 & - & 20,518 \\
\hline International Development Cooperation Agency (AID) & 36,992 & 32,451 & 4,541 & - \\
\hline National Aeronautics \& Space Admin. & 113,883 & 34,951 & - & 78,932 \\
\hline National Science Foundation & 83,500 & 68,804 & - & 14,696 \\
\hline Veterans Admin. & 194,500 & 174,484 & 6,013 & 14,003 \\
\hline
\end{tabular}

SOURCE: National Institutes of Health.
these government bodies are encouraged to identify those programs and projects that are health services research. Efforts also should be made to develop an approach for systematically obtaining information on health services research funding by private industry, foundations, and state governments.

\section*{THE MARKET OUTLOOK FOR HEALTH SERVICES RESEARCH PERSONNEL}

Data are not available that would allow the committee to make quantitative estimates of the current supply of health services research personnel, nor that would support projections of future
supply or demand. This situation is markedly different from that in the biomedical, behavioral, and clinical sciences. In those areas, (a) the participants fall into distinct disciplines which enable them to be identified and counted, (b) data on sources of funds supporting research are routinely available, (c) employment of researchers is concentrated in well-defined academic departments. In addition, the federal government and organizations such as the AAMC and APA have made major investments to develop data on research personnel and the institutions that employ them. The committee has been fortunate to be able to draw on these data sources in order to analyze supply and demand for these fields.

The committee encourages the development of a base of knowledge on the training, employment, and research activities of health services researchers, and on the funding of health services research. Such data are necessary for the quantitative assessment of the market for these investigators by this committee and others, and also could contribute to a qualitative assessment of the "match" between the problems addressed by health services researchers and the qualifications of members of the field. The research agenda will of necessity have to take into account the diversity of training among health services research personnel, the multiple sources of ressarch funding for the field, and the nature of employment that includes government and private industry as well as academia. These characteristics set health services research apart from the other fields for which this committee makes recommendations and greatly complicate the development of systematic information. At the same time, they are characteristics that are not unique to health services research but are common to applied, multidisciplinary areas such as area studies, urban studies, and population studies.

The research agenda should be developed with the participation of a broad representation of interested organizations such as the major federal funding sources for health services research (NCHSR, HCFA, NIH, VA), private foundations that have provided significant support for the field, academic and non-academic employers of health services researchers including health services research centers, the Association for Health Services Research, and other relevant professional organizations. The research agenda can draw upon the past work of this committee's health services research panel, which gave considerable thought to the merits of various approaches for improving the information base in health services research.

\section*{Health Services Research Centers}

In some universities, a center serves as the focal point for health services research. In 1984 there were 38 academic health services research centers \({ }^{\text {n }}\) according to the Association for Health Services

\footnotetext{
\({ }^{9}\) Defined as "an organization or entity whose primary mission is the conduct of health services and policy research by a multidisciplinary staff, which is either based in or formally affiliated with an academic institution" (AHSR, 1983).
}

Research (Table 5.5). These centers vary widely in size, organiza-tional location, sources of funding, and training capabilities. Anecdotal evidence suggests the need for an assessment of center funding and study of the factors characterizing effective centers. Of particular corscern is support of research which has a long-range orientation, especially research on methods and concepts and research that illuminates fundamental health-related behaviors of institutions and individuals.

Individual investigators as well as enclaves of health services researchers are found in departments of political science, social and behavioral science, economics, epidemiology, biostatistics, operations research, nursing, medicine, and surgery. They are also found in departments of community medicine, maternal and child health, health education, health policy and management, and health administration, departments that often are multidisciplinary and may share characteristics in common with centers.

TABLE 5.5 Characteristics of Health Services Research Centers, 1983
\begin{tabular}{|c|c|}
\hline Number of Centers & 38 \\
\hline Number of Full-Time Employees & 3-71 \\
\hline Budgeta & \$120,000-\$5.5 million \\
\hline Organizational Location & \\
\hline Office of the President, Chancellor, or Vice President & 6 \\
\hline Graduate School of Business, Management, Public Administration, Social Welfare & 5 \\
\hline School of Medicine & 9 \\
\hline School of Public Health & 8 \\
\hline Other & 10 \\
\hline Sources of Funding & \\
\hline Federal Government & 28 \\
\hline State/Local Government & 12 \\
\hline Private Foundation & 27 \\
\hline Corporation & 18 \\
\hline Parent University & 16 \\
\hline Endowment Income & 6 \\
\hline Other & 3 \\
\hline Training Capability & \\
\hline None & 12 \\
\hline Internships & 9 \\
\hline Predoctoral fellows & 13 \\
\hline Postdoctoral fellows & 15 \\
\hline Other & 7 \\
\hline
\end{tabular}
a Based on 36 centers reporting.
SOURCE: Association for Health Services Research (1983).

The committee applauds the survey of investigators associated with academic health services research centers that is being conducted by the Association for Health Services Research. This survey represents a significant step in that not only will it provide a picture of a very important súppopulation of health services researchers, but also be invaluable in the development of a broader research strategy. The data from this survey should become available in 1986.

\section*{Training for Health Services Research}

As this committee stated in its 1983 report, "A competent principal. investigator in health services research must have two sets of qualifications. The first is an adequate grasp of a discipline or profession \({ }^{10}\) [and] the second...is an understanding of....the delivery and financing of health care and a mastery of suitable research methods (IOM, 1983b, p. 121)."

An indication of the diversity of disciplines/professions among health services researchers can be gleaned from the results of the 1978 survey of former principal investigators on NCHSR research grants (Table 5.6) and NCHSR trainees (Table 5.7). The distribution of health services researchers by discipline probably would be different today. Too, these data did not represent investigators who received support from HCFA, ADAMHA, NIH, or other sources. Based on the 1985 estimate (Table 5.4) of \(\$ 183 \mathrm{mill}\) ion in federal obligations for health services research, NCHSR support represents approximately 8 percent of the total.

The second set of qualifications can be acquired (1) through formal coursework and research experience during predoctoral training, including dissertation research, (2) through formal postdoctoral training, or (3) informally, through research experience gained after completing graduate training. Early contributozs to health services research came from this latter group, "switching" to health services research from clinical medicine, public health, or the social sciences. On the basis of the committee's 1978 survey of health services researchers, \(i\) i appears that newer entrants to the field are more likely to have had formal training in it. Part of a research agenda on health services research personnel should be an assessment of the appropriateness of training.

\footnotetext{
\({ }^{10}\) The committee listed as examples anthropology, sociology, psychology, economics, political science, biomedical and clinical sciences, public health, epidemiology, biostatistics, operations research, health administration, health education and public administration.
}

TABLE 5.6 Field of Highest Degree Renorted by NCHSR Principal Investigators, FY 1978
\begin{tabular}{|c|c|}
\hline Field of Highest Degree & Number of Individuals \({ }^{a}\) \\
\hline TOTAL & 398 \\
\hline Total Behavioral Sciences & 60 \\
\hline Anthropology & 3 \\
\hline Psychology & 14 \\
\hline Sociology & 43 \\
\hline Total Social Sciences & 41 \\
\hline Economics/Econometrics & 30 \\
\hline Political Science & 5 \\
\hline Other & 6 \\
\hline Total Biomedical Sciences & 20 \\
\hline Biometrics/Blostatistics & 13 \\
\hline Other & 7 \\
\hline Total Medical Sciences & 36 \\
\hline Public Health and Epidemiology & 11 \\
\hline Nursing & 7 \\
\hline Other & 18 \\
\hline Total Other Fields & 108 \\
\hline Bioengineering & 0 \\
\hline Operations Research & 2 \\
\hline Public Administration & 2 \\
\hline Other & 104 \\
\hline Total Medical Doctorates & 133 \\
\hline
\end{tabular}
\({ }^{a}\) Exclucies full-time degree candidates.
SOURCE: National Research Council (1977a).

The committee reaffirms its position that health services research is an important field that offers significant potential for increasing understanding of health care. The field's importance is even greater in this time of rapid and profound changes in the organization and financing of health care and the proliferation of medical technology. To maintain an adequate pool of qualified investigators to address questions of the quality, cost, and effectiveness of health care in the future, the committee recommends that NRSA awards be made specifically and explicitly for health services research training at levels of support set out in Chapter 1.

In the early 1970 s, the federal government provided support to over 800 health services research trainees and fellows (NRC, 1975-81). By 1981, this number had dwindled to zero-neither the NIH, ADAMHA, nor the HRSA was supporting any extramural training in health services research. This committee has recommended that these training programs be restored to about the 1976 level. In addition, the committee continues to endorse the dissertation grant program of NCHSR as an effective means for increasing the pool of health services research personnel.

TABLE 5.7 Field of Highest Degree Reported by NCHSR Trainees, FY 1978
\begin{tabular}{lc}
Field of Highest Degree & \begin{tabular}{c}
Number of \\
Individuals \({ }^{a}\)
\end{tabular} \\
\hline TOTAL & 565 \\
Total Behavioral Sciences & 236 \\
Anthropology & 18 \\
Psychology & 32 \\
Sociology & 186 \\
Total Soclal Sclences & \\
Economics/Econometrics & 76 \\
Political Science & 36 \\
Other & 16 \\
Total Biomedical Sclences & 24 \\
Blometrics/Biostatistics & 21 \\
Other & 20 \\
Total Medical Sciences & 1 \\
Public Health and Epidemiology & 131 \\
Nursing & 45 \\
Other & 10 \\
Total Other Fields & 76 \\
Bioenglneering & 101 \\
Operations Research & 1 \\
Public Administration & 6 \\
Other & 5 \\
\hline
\end{tabular}
\({ }^{a}\) Excludes full-time degree candidates.
SOURCE: National Research Council (1977a).

\title{
6. Nursing Research
}

\begin{abstract}
The Division of Nursing of the Health Resources and Services Administration currently provides the major portion of funds for nursing research supported by the federal government. About \(\$ 9\) million in research grants and contracts was awarded by this agency in FY 1984. A substantial amount of nursing research is also sponsored by the NIH, the Veterans Administration, and private organizations such as the American Nurses Foundation and the Robert Wood Johnson Foundation. Funds provided by these organizations have supported recent studies on the health and care gt premature infants which have shown how they respond co specific nursing interventions. Other studies have focused on care and prevention of disability in the elderly.

In most but not all of these studies, the principal investigator is a nurse with a doctorate degree. Although the annual production of nurses with doctorate degrees is increasing, only about 8 percent of nurses serving as full-time faculty members held doctorate degrees in 1982. The lack of nurses with doctorates to serve as faculty exercises a qualitative, as well as quantitative constraint on the continued growth of doctoral programs in nursing. There does not appear to be any substantial amount of support available for training in nursing research other than that provided by the Division of Nursing, HRSA, under the NRSA program.
\end{abstract}

According to a recent statement by the American Nurses' Association:

Nursing research generates knowledge about health and health promotion in individuals and families and knowledge about the influence of social and physical environments on health. Nursing research also addresses the care of persons who are acutely or chronically ill, disabled, or dying, as well as the care of their families. In addition, nursing research studies therapeutic actions that minimize the negative
effects of illness by enhancing the abilities of individuals and families to respond to actual or potential health problems. Nursing research also emphasizes the generation of knowledge about (a) systems that effectively and efficiently deliver health care, (b) the profession and its historical development, (c) ethical guidelines for the delivery of nursing services, and (d) systems that effectively and efficiently prepare nurses to fulfill the profession's current and future social mandate.

Nursing research complements biomedical research, which is primarily concerned with causes and treatments of disease. In its attention to the study of nursing interventions, procedures, and methods of patient care it also complements clinical research by members of other health professions. And, in its attention to the costs and outcomes of different types of procedures, settings, and providers of care, it contains a large component of health services research.

The Division of Nursing, HRSA, Classifies nursing research into six categories:
1. Fundamental research, which establishes a foundation for further investigations rather than contributing to the solution of specific health problems. It may use human or animal subjects to investigate the ways in which human beings and human systems function and behave, and the ways in which humans think, feel, act, and interact, e.g., studies of the interaction of mothers or fathers with their new infants;
2. Nursing practice research, which directly addresses nursing practice problems, often by assessing the effectiveness of nursing procedures, techniques, and methods, either physical, psychosocial, or cultural. Dependent variables usually involve client outcomes, and studies often employ experimental methods;
3. Nursing profession research, which addresses the nurse as a professional, with studies of cognitive, attitudinal, and behavioral characteristics of nurses which may influence nurs.ng practice;
4. Nursing services administration research, which investigates the structure in which nursing care is provided as well as the physical and social environment in which nurses and clients interact;
5. Nursing education research, which is concerned with the educational process, including studies of the curriculum and student-faculty interaction; and
6. Utilization of research findings, which includes studies of the utilization of research findings in practice and education.

\section*{EXAMPLES OF NURSING RESEARCH}

An important step in the maturation of nursing research came in 1983 with the publication of the first Annual Review of Nursing Research (Werley and Fitzpatrick, eds.). This publication provides an overview of the field, highlighting significant advances and suggesting areas where additional research is needed.

Nursing researchers have made important advances in the study of the health care of infants, young children, and the elderly. Nurse investigators, for example, "have been concerned with questions about how premature infants respond to extrauterine living and how nursing action influences the response and well-being of premature infants" (Barnard, 1984, P. 4). In one clinical study, premature infants were given finger sucking opportunities twice a day, which appeared to promote neuromuscular coordination, alert activity, alert inactivity, and deep sleep (Anderson and Vidyasagar, 1979, cited in Barnard, 1984). Another study showed that sucking during and after tube feedings advanced premature infants' readiness for bottle feeding by several days. These infants gained weight faster and left the hospital four days earlier than comparison infants not on the sucking protocol (Measal and Anderson, 1979, cited in Barnard, 1984). The role of sucking as a regulator of infants' physiological and behavioral responses is an important area for research. Other significant nursing research is addressing the effects of various stimuli (tactile, auditory, kinesthetic, and visual) on preterm infants' neurological and mental development, and weight gain (Barnard, 1984). This research has significant implications for the effectiveness and cost, meonatal nursing care. The average cost of initial neonatal inten e care is estimated to exceed \(\$ 13,000\) (Institute of Medicine, ig85, p. 229), and almost 7 percent of newborns in the U.S. are at risk because of low birthweight.

Nurse researchers also have addressed important questions in clinical geriatric nursing: the maintenance of health, prevention of illness and disability, and care of the ill elderly. This research is of great importance as life expectancy increases; data from the 1980 census show that 1.5 percent of persons age \(65-74\) were in nursing homes; the percentage rises to 6.6 percent for persons 75-84, and 22.7 percent for persons 85 and over. In 1983, almost \(\$ 29\) billion was spent on nursing home care (Gibson et al., 1984). Two issues in the clinical care of the ill elderly that are being addressed by nursing researchers are (l) the prevention and treatment of decubitus ulcers and (2) the prevention or reduction in the frequency of incontinence. Gerber and Van Ort (1979, cited in Wolanin, 1984), for example, tested the use of topical insulin in treating decubiti with good results. Catanzaro (1981, cited in Wolanin, 1984) conducted a qualitative study of the perceptions of the elderly regarding incontinence; other, experimental studies have employed behavior modification techniques to control incontinence (Wolanin, 1984).

As these examples illustrate, the nature of problems studied by nurses is influenced strongly by the nature of problems they encounter in the clinical setting. While these problems might be studied by investigators from other health professions, they generally are not.

\title{
SOURCES OF SUPPORT FOR NURSING RESEARCH AND TRAINING
}

\author{
Division of Nursing, HRSA
}

\section*{Nursing Research}

The Division of Nursing of the Health Resources and Services Administration (PHS, DHHS) is the primary source of funding for nursing research and research training in the federal government. Since Januaxy 1985, the Nursing Research Grants Program has been administered by a Center for Nursing Research. Replacing the research component of the former Nursing Research and Analysis Branch, the center is intended to provide increased visibility to nursing research in DHHS. In establishing the Center, no additional budget allocation was made by the Secretary.

The Division supports five types of grants under its Nursing Research Grants Program, as described below.

NURSING RESEARCH PROJECT GRANTS support discrete, specified, circumscribed projects in an area representing the investigator's interest and competencies.

NURSING RESEARCH PROGRAM GRANTS support clusters of at least three studies focused upon a single theme.

NEW INVESTIGATOR NURSING RESEARCH AWARDS (NINRA) support small studies of high quality carried out by new investigators.

UTILIZATION OF RESEARCH IN NURSING AWARDS (URNA) support projects to bridge the gap between the generation of knowledge through research and the utilization of such knowledge in nursing practice, nursing education, or nursing services administration.

NURSING RESEARCH EMPHASIS GRANTS FOR DOCTORAL PROGRAMS IN NURSING (NRE/DPN) stimulate nursing research in areas that emphasize special health needs of the nation, and advance the research efforts and resources of faculty in schools of nursing offering doctoral programs.

The stated purpose of the Nursing Research Grants Program is "to enlarge the body of scientific knowledge that underlies nursing practice, nursing education, and nursing services administration; and to streng then these areas through the utilization of such knowledge." principal investigators need not be nurses. The NRS/DPN projects, however, are specifically designed for schools of nursing that offer doctoral programs. Applications for all five types of grants are submitted to the Division of Research Grants of the National Institutes of Health; they are then assigned to the Division of Nursing on the basis of nursing relevance, where they are subject to interdisciplinary peer review.

Grants are awarded in a number of content areas (Table 6.1). As shown, most projects in recent years have been in the areas of fundamental research and research on nursing practice. Fundamental research provides basic knowledge about the person before intervention; nursing practice research looks at the interaction between the nurse and the patient. Examples of some recent projects include "Models of Newborn Nursing Services," "Stress Response: Assessment and Change," and "Acute Confusional States in Elderly Patients."

Table 6.2 shows the earned doctorates of principal investigators (PIs) working under research grants from the Division of Nursing. Nurses have represented between 75 percent and 85 percent of the awardees in each year since 1974. The proportion of nurse PIs holding doctorates has increased from about 50 percent in 1974 to 96 percent in 1983. Nearly all of the non-nurse pis have held doctorates.

TABLE 6.1 Nursing Research Grants Active at End of Fiscal Years 1969-83, by Content Category \({ }^{a}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Content Category}} & \multicolumn{15}{|c|}{Fiscal Year} \\
\hline & & 1969 & 1970 & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 & 1983 \\
\hline A & Fundamental & 5 & 6 & 9 & 7 & 9 & 10 & 12 & 9 & 10 & 11 & 8 & 10 & 11 & 9 & 12 \\
\hline B & Nursing Practice & 6 & 6 & 4 & 7 & 11 & 9 & 9 & 6 & 9 & 14 & 20 & 25 & 23 & 16 & 19 \\
\hline C & Nursing Profession & 6 & 6 & 6 & 6 & 7 & 4 & 2 & 1 & 6 & 7 & 4 & 3 & 3 & 3 & 7 \\
\hline D & Delivery of Nursing Services & 9 & 6 & 6 & 4 & 5 & 6 & 4 & 2 & 1 & 1 & 1 & 1 & 2 & 2 & 5 \\
\hline E & Nursing Education & 4 & 4 & 1 & 3 & 2 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline F & Research Conferences & 3 & 3 & 3 & 5 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline G1,2 & \begin{tabular}{l}
(Faculty) \\
Research Development
\end{tabular} & 16 & 17 & 14 & 16 & 13 & 15 & 11 & 9 & 12 & 10 & 9 & 4 & 0 & 0 & 0 \\
\hline G3 & Program Grants & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 6 & 5 & 3 \\
\hline G4 & NRE/DPN & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10 & 13 & 13 & 14 \\
\hline H & Utilization of Research Findings & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \(1{ }^{\text {c }}\) & 0 & 0 & 0 \\
\hline \(4{ }^{\text {b }}\) & Development of Methodology, Tools TOTAL & \[
\frac{5}{54}
\] & \[
\frac{4}{52}
\] & \[
\frac{1}{44}
\] & \[
\frac{1}{49}
\] & \[
\frac{2}{54}
\] & \[
\frac{2}{47}
\] & \[
\frac{4}{44}
\] & \[
\frac{4}{33}
\] & \[
\frac{5}{45}
\] & \[
\frac{8}{53}
\] & \[
\frac{8}{51}
\] & \[
\frac{n / a}{58}
\] & \[
\frac{n / a}{58}
\] & \[
\frac{n / a}{48}
\] & \[
\frac{n / a}{61}
\] \\
\hline
\end{tabular}
a Count includes projects which were extended without receiving funds during the fiscal year under consideration.
\({ }^{6}\) Category 4 was in the classification system used until 1979.
c Also G2.
SOURCE: Division of Nursing, HRSA.

TABLE 6.2 Doctoral Degree Status of Principal Investigators on Active Research Grants from the Division of Nursing, 1974-83
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fiscal Year of Grant} & \multicolumn{2}{|l|}{Nurses with Doctorates} & \multicolumn{2}{|l|}{Nurses wlthout Doctorates} & \multicolumn{2}{|l|}{Non-Nurses with
\(\qquad\) Doctorates} & \multicolumn{2}{|l|}{Non-Nurses wlthout Doctorates} & \multirow[b]{2}{*}{\[
\frac{\text { Total }}{\mathrm{N}}
\]} \\
\hline & N & \% & N & \% & N & \% & N & \% & \\
\hline 1974 & 17 & 37 & 18 & 39 & 11 & 24 & 0 & 0 & 46 \\
\hline 1975 & 23 & 52 & 10 & 23 & 11 & 25 & 0 & 0 & 44 \\
\hline 1976 & 19 & 58 & 7 & 21 & 7 & 21 & 0 & 0 & 33 \\
\hline 1977 & 29 & 64 & 5 & 11 & 10 & 23 & 1 & 2 & 45 \\
\hline 1978 & 32 & 60 & 8 & 15 & 12 & 23 & 1 & 2 & 53 \\
\hline 1979 & 30 & 59 & 10 & 20 & 11 & 21 & , & 0 & 51 \\
\hline 1980 & 40 & 69 & 10 & 17 & 8 & 14 & 0 & 0 & 58 \\
\hline 1981 & 38 & 66 & 7 & 12 & 13 & 22 & 0 & 0 & 58 \\
\hline 1982 & 34 & 71 & 4 & 8 & 10 & 21 & 0 & 0 & 48 \\
\hline 1983 & 49 & 80 & 2 & 3 & 9 & 15 & 1 & 2 & 61 \\
\hline
\end{tabular}

SOURCE: Dlvislon of Nursing, HRSA.

Table 6.3 shows the amount of money appropriated and awarded to nursing research grants and contracts from 1956 through 1984. In 1956, \(\$ 498,000\) was awarded. This amount has increased since then, reaching a plateau of \(\$ 5\) million in the late 1970 s and early 1980s; it was increased to \(\$ 9\) million for \(F Y\) 1984. Figure 6.1 shows this history from 1969 on, in constant 1972 dollars.

\section*{Training for Nursing Research}

In FY 1984, 117 students were being supported under the NRSA awards funded through the Division of Nursing, for a total of \(\$ 955,487\) (Table 6.4). Two million dollars have been appropriated for Fy 1985 and about 170 trainees and fellows are expected to be supported. To be eligible under the predoctoral and postdoctoral Nurse Fellowship Program, applicants must be registered professional nurses with an active license and a degree in nursing ac the appropriate level. Predoctoral stipends are \(\$ 6,552\) per year; postdoctoral stipends begin at \(\$ 15,996\). Institutions can receive \(\$ 3,000\) for each predoctoral trainee and \(\$ 5,000\) for each postdoctoral trainee annually.

Support of research training by the Division of Nursing is primarily at the predoctoral level. In FY 1984, for example, of 102 applications received, just 5 were from postdoctoral applicants; 2 of these were approved (Table 6.5).

TABLE 6.3 Nursing Research Grants and Contracts Awarded, FY 1956-84 (\$ thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Fiscal \\
Year
\end{tabular}} & \multirow[t]{2}{*}{Amount Approprlated} & \multirow[b]{2}{*}{Amount Awarded} & \multicolumn{3}{|c|}{New Grants} & \multicolumn{2}{|l|}{Renewal Grants} & \multicolumn{2}{|l|}{Continuation Grants} & \multicolumn{2}{|c|}{\begin{tabular}{l}
T\&(S) \\
Grants \({ }^{\text {a }}\)
\end{tabular}} & \multicolumn{2}{|l|}{Contracts} \\
\hline & & & N & & \$ & N & \$ & N & \$ & N & \$ & N & \$ \\
\hline 1956 & & \$ 498 & & & & & & & & & & & \\
\hline 1957 & & 525 & & & & & & & & & & & \\
\hline 1958 & & 725 & & & & & & & & & & & \\
\hline 1959 & & 976 & & & & & & & & & & & \\
\hline 1960 & & 1,208 & & & & & & & & & & & \\
\hline 1961 & & 1,449 & & & & & & & & & & & \\
\hline 1962 & & 1,476 & & & & & & & & & & & \\
\hline 1963 & & 1,814 & & & & & & & & & & & \\
\hline 1964 & \$1,999 & 1,999 & & & & & & & & & & & \\
\hline 1965 & 1,953 & 1,952 & & & & & & & & & & & \\
\hline 1966 & 2,170 & 2,166 & & & & & & & & & & & \\
\hline 1967 & 2,230 & 2,087 & & & & & & & & & & & \\
\hline 1968 & 2,655 & 2,593 & 22 & \$ & 744 & 4 & \$266 & 32 & \$1,475 & \(2+(3)\) & \$108 & 0 & \$ 0 \\
\hline 1969 & 2,593 & 2,593 & 16 & & 642 & 4 & 158 & 33 & 1,720 & (4) & 73 & 0 & 0 \\
\hline 1970 & 2,625 & 2,155 & 10 & & 524 & 1 & 76 & 28 & 1,390 & (6) & 165 & 0 & 0 \\
\hline 1971 & 2,455 & 1,955 & 11 & & 781 & 3 & 92 & 18 & 1,039 & (4) & 43 & 0 & 0 \\
\hline 1972 & 2,455 & 2,439 & 18 & & 865 & 1 & 56 & 21 & 1,283 & (9) & 99 & 1 & 136 \\
\hline 1973 & 2,455 & 2,454 & 9 & & 519 & 1 & 61 & 27 & 1,704 & (8) & 98 & 1 & 72 \\
\hline 1974 & 2,660 \({ }^{6}\) & 2,631 & 13 & & 877 & 2 & 161 & n & 1,378 & (10) & 99 & 1 & 116 \\
\hline 1975 & 1,200 & 3,374c & 11 & & 962 & 8 & 783 & " & ; 17 & \(1+(4)\) & 204 & 1 & 118 \\
\hline 1976 & 2,804 & 2,801 & 1 & & 80 & 0 & 0 & 29 & 2,617 & (1) & 11 & 1 & 93 \\
\hline 1977 & 5,000 & 4,991 & 25 & & 2,674 & 5 & 327 & 7 & 954 & \(3+(7)\) & 484 & 3 & 553 \\
\hline 1978 & 5,000d & 4,979 & 15 & & 1,413 & 1 & 103 & 31 & 3,447 & (1) & 16 & 0 & 0 \\
\hline 1979 & 5,000e & 4,944 & 10 & & 929 & 3 & 366 & 30 & 3,514 & \(2+(1)\) & 135 & 0 & 0 \\
\hline 1980 & 5,000 & 4,986 & 26 & & 2,882 & 4 & 465 & 16 & 1,580 & (4) & 58 & 0 & 0 \\
\hline 1981 & 5,000 & 4,950 & 16 & & 1,592 & 1 & 98 & 29 & 3,066 & \(2+(1)\) & 195 & 0 & 0 \\
\hline 1982 & 3,400 \({ }^{4}\) & 3,376 \({ }^{\text {i }}\) & 3 & & 184 & 1 & 84 & 37 & 3,001 & \(2+(0)\) & 107 & 0 & 0 \\
\hline 1983 & 5,000 & 4,995 & 30 & & 3,030 \({ }^{\text {k }}\) & 8 & 717 & 14 & 1,245 & \(0+(1)\) & 2 & 0 & 0 \\
\hline 1984 & 9,000 & 8,986 & 45 & & 4,591m & 2 & 269 & 31 & 3,097 & 1+(1) & 80 & 3 & 868 \\
\hline
\end{tabular}
a Transfers and supplements. A "transfer" is a change of grantee institution; a "supplement" refers to additional funds provided to a funded project.
\({ }^{6}\) Funds reprogrammed.
c Includes \$2,412,000 from Nursing Special Projects Funds.
d Minus \(\$ 17,000\) retained for BHM evaluation activities.
- Minus \(\$ 50,000\) retained for BHM evaluation activities.
\(f\) Minus \(\$ 13,000\) retained for BHPr evaluation activities.
\(\varepsilon\) Minus \(\$ 50,000\) retained for BHPr evaluation activities.
\({ }^{\text {h }}\) Minus \(\$ 24,000\) retained for BHPr evaluation activities.
I Includes \(\$ 1,000,000\) appropriated for the Nursing Research Grants Program in urgent supplemental appropriation.
J Minus \(\$ 4,355\) retained for BHPr evaluation activities.
* Includes \(\$ 197,094\) transferred to NCHSR for one cooperatively funded project.
' Minus \(\$ 90,000\) retained for BHPr evaluation activities.
\({ }^{m}\) Includes \(\$ 747,376\) transferred to NIA for \(\mathbf{4}\) cooperatively funded projects.
SOURCE: Division of Nursing, HRSA.

FIGURE 6.1 Funding for nursing research grants and contracts, 1960-83 (1972 \$, millions). Data are from the Division of Nursing, HRSA.

TABLE 6.4 National Research Service Awards in Nursing, FY 1982-84a
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{Predoctoral} & \multicolumn{2}{|c|}{Postdoctoral} & \multicolumn{2}{|c|}{Total} \\
\hline & N & \$ & N & \$ & N & \$ \\
\hline \multicolumn{7}{|l|}{1982} \\
\hline New & 56 & & 2 & & 58 & 492,400 \\
\hline Continuing & 62 & & 0 & & 62 & 467,110 \\
\hline Total & 118 & & 2 & & 120 & 959,510 \\
\hline \multicolumn{7}{|l|}{1983} \\
\hline New & 43 & 354,231 & 3 & 58,548 & 46 & 412,779 \\
\hline ContInuing & 64 & 513,562 & 2 & 33,590 & 66 & 547,152 \\
\hline Total & 107 & 867,793 & 5 & 92,138 & 112 & 959,931 \\
\hline \multicolumn{7}{|l|}{1984} \\
\hline New & 47 & 389,724 & 2 & 45,952 & 49 & 435,676 \\
\hline Continuing & 66 & 496,786 & 2 & 23,025 & 68 & 519,811 \\
\hline Total & 113 & 886,510 & 4 & 68,977 & 117 & 955,487 \\
\hline
\end{tabular}
a All awards represent fellowships.
SOURCE: Division of Nursing, HRSA.

\section*{131}

TABLE 6.5 NRSA Applications Reviewed by Scientific Review Groups, by Status of Application, FY 1984
\begin{tabular}{lcccc}
\hline Date of Review & \begin{tabular}{c}
Total \\
Applicatlons
\end{tabular} & \begin{tabular}{c}
Number \\
Approved
\end{tabular} & \begin{tabular}{c}
Number \\
Disapproved
\end{tabular} & \begin{tabular}{c}
Number \\
Deferred
\end{tabular} \\
\hline October 13-14, 1984 & 34 & 23 & 10 & 1 \\
February 2-3, 1984 & 20 & 13 & 6 & 16 \\
May 10-11, 1984 & \(\frac{48}{102}\) & \(\frac{31}{67}\) & 32 & \(\frac{1}{3}\) \\
TOTAL APPLICATIONS & 96 & 64 & 29 & 3 \\
Predoctoral Applications & 5 & 2 & 3 & 0 \\
Postdoctoral Applications & 1 & 1 & 0 & 0 \\
Institutlonal Training Grants & & & & \\
\hline SOURCE: Division of Nursing, HRSA. & & & & \\
\hline
\end{tabular}

SOURCE: Division of Nursing, HRSA.

Most of the applicants and trainees sponsored through the division are doing work in nursing (Table 6.6). Of approved applicants in 1984, 66 percent were in the nursing discipline. Among the stated research interests of 1984 awardees were "Coping with Spinal Cord Injuries and Rehabilitation," "Psychometric Methods for Nursing Research," "Nursing Care Delivery Systems in Rural Areas," and "Nursing Strategies in Infection Prevention of Cancer Patients."

It is estimated that approximately 1,000 individuals have received training grants in the area of nursing since the inception of the NRSA awards.

TABLE 6.6 Disciplines of NRSA Applicants, by Status of Application, FY 1984
\begin{tabular}{|c|c|c|c|c|c|}
\hline Discipline & Total Applications & Number Approved & Number Disapproved & Number Deferred & Number Withdrawn \\
\hline Nursing & 64 & 44 & 18 & 1 & 1 \\
\hline Human Development & 4 & 1 & 2 & 1 & \\
\hline Physiology & 4 & 3 & 1 & & \\
\hline Epidemiology & 1 & 1 & 1 & & \\
\hline Anthropology & 3 & 2 & 1 & & \\
\hline Psychology & 1 & i & & & \\
\hline Sociology & 2 & 1 & 1 & & \\
\hline Social Psychology & 5 & 2 & 3 & & \\
\hline Education & 2 & 1 & 1 & & \\
\hline Educational Psychology & 1 & 1 & & & \\
\hline Health Services & 6 & 3 & 3 & & \\
\hline Public/Community & 2 & 2 & & & \\
\hline Health & 1 & 1 & & & \\
\hline History & 2 & 2 & & & \\
\hline Rehabilitation Education & 2 & 2 & & & \\
\hline Policy/Ethics & 2 & & 2 & 1 & \\
\hline TOTAL & 102 & 67 & \(\frac{12}{32}\) & \(\overline{3}\) & \(\overline{1}\) \\
\hline
\end{tabular}

SOURCE: Division of Nursing, HRSA.

\section*{National Institutes of Health}

In December 1984, an NIH Task Force on Nursing Research delivered its report to the NIH Director. The report focused primarily on the support of nursing research by NIH in fiscal year 1983. The report uses a working definition of nursing research at NIH: research conducted by the nurse principal investigator (PI); or nursing care research. \({ }^{1}\) The task force was able to classify 108 extramural activities funded by NIH in FY 1983 as nursing research or as having components of nursing research. A total of \(\$ 6.6\) million was awarded to the nursing portions of these activities. The awards were made through 14 types of activities in the extramural program (Table 6.7). Table 6.8 shows which unit of NIH supported the activities. Seventy percent of the total funding came fron either the National Cance: Institute or the National Institute on Aging.

A major program of the National Cancer Institute involving nursing research is the Clinical Cooperative Group Program. The 15 cooperative groups support oncology nursing or nursing research subcommittees. Activities of nurses in the clinical research effort include participation in protocol development (with particular emphasis on the potential impact of different treatment options on patient compliance), facilitation of the informed consent process, development of nursing care and patient education approaches to dealing with side effects of therapy, data management, attendance at scientific meetings, and presentation and publication of research results.

The individual units were asked to classify their projects into one of five focus areas. These areas were defined as follows:
1. Research--scientific inquiry in the cause, diagnosis, and prevention of diseases, in promotion of health, in the \(f=r \cdot j e s s e s\) of hume \(n\) qrowth and development and \(i_{1}\) the biolocica!. . \(f\) fects of environmental contaminants. ", wincipal investigator is a nurse.

\footnotetext{
\({ }^{2}\) The full definition follows: 1. Research conducted by the nurse principal investigator: scientific inquiry in the causes, diagnosis, and prevention of diseases; in the promotion of health; in the processes of human growth and development; and in the biological effects of environmental contaminants. 2. Nursing care research: research directed to understanding the nursing care of individuals and groups and the biological, physiological, social, behavioral, and environmental mechanisms influencing health and disease which are relevant to nursing care. Nursing research develops knowledge about health and the promotion of health over the full lifespan, care of persons with health problems and disabilities, and nursing actions to enhance the ability of individuals to respond effectively to actual or potential health problems (Task Force Report, p. 1).
}

TABLE 6.7 Activities of NIH Grants with Nursing Research Components, FY 1983
\begin{tabular}{lc}
\hline Activity (Code) & Number of Awards \\
\hline Research Project (R01) & 21 \\
Research Demonstration and Dissemination (R18) & 20 \\
Comprehensive Center (P60) & 19 \\
Biomedical Research Support Grant (S07) & 15 \\
Specialized Center (P50) & 8 \\
Research Program Projects (P01) & 7 \\
Academic Teacher Award (K07) & 5 \\
General Cliniral Research Center (M01) & 5 \\
Research and Development Contracts (N01) & 2 \\
Contracts (unspecified) & 2 \\
New Investigator Research Award (R23) & 1 \\
Intragency Agreement (Y01) & 1 \\
Small Grants (R03) & 1 \\
Small Business Innovation Research (R43) & 1 \\
TOTAL & 108 \\
\hline
\end{tabular}

SOURCE: NIH Task Force on Nursing Research, December 1984.

TABLE 6.8 NIH-Funded Extramural Projects in Nursing Research or with Nursing Research Components, by Supporting Unit, PY 1983
\begin{tabular}{|c|c|c|c|}
\hline Institute/Division & Number of Awards & \$ Funded & \% of Total \$ \\
\hline Nat'l. Cancer Institute & 30 & 2,541,012 & 40 \\
\hline Nat'l. Institute on Aging & 22 & 2,025,456 & 30 \\
\hline Division of Research Resources & 20 & 173,133 & 3 \\
\hline Nat'l. Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases & 13 & 194,645 & 3 \\
\hline Nat'l. Heart, Lung, and Blood Institute & 11 & 713,726 & 11 \\
\hline Nat'l. Institute of General Medical Sciences & 6 & 156,359 & 2 \\
\hline Nat'l. Institute of Allergy and Infectious Diseases & 3 & 84,342 & 1 \\
\hline Nat'l. Institute of Neurological and Communicative Dismrders and Stroke & 3 & 658,000 & 10 \\
\hline TOTAL & 108 & 6,646,682 & 100 \\
\hline
\end{tabular}

SOURCE: NIH Task Force on Nursing Research, December 1984.
2. Nursing Care Research-research directed to understanding the nursing care of individuals and groups and the biological, physiological, social, behavioral, and environmental mechanisms influencing health and disease which are relevant to nursing care. Nursing research develops knowledge about health and the promotion of health over the full lifespan, care of persons with health problems and disabilities, and nursing actions to enhance the ability of individuals to respond effectively to actual or potential health problems.
3. Clinical Training-.-activities directed to the improvement or expansion of educarion and training of nursing students and practitioners.
4. Development of Researchers--activities directed to assisting or extending training of individuals preparing for research.
5. Other--activities that are supportive of the research process or basic or applied research that involves nursing but where the project is not headed by a nurse principal investigator.

Table 6.9 breaks down the total by the investigator (nurse or non-nurse) and by the focus of the award. In contrast to the Division of Nursing, the majority of projects funded by NIH in the area of nursing research did not have nurses as principal investigators. About 26 percent of the projects were headed by PIs who were nurses; this accounts for about 21 percent of the total money awarded to nursing activities. An example of a project headed by a PI who is a nurse is a project on sickle cell anemia sponsored by the National Heart, Lung, and Blood Institute. The study focuses on consolidating and strengthening programs which provide screening, education, counseling, and patient care to persons with sickle cell anemia. Most of the funding, 62 percent overall, was classified as nursing care research. In the "Development of Researchers" category, there was one project, accounting for 6 percent of the total amount awarded.

TABLE 6.9 NIH-Funded Extramural Projects in Nursing Research or with Nursing Research Components, by Focus of Award and Type of Investigator, FY 1983
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Focus of Award} & \multicolumn{3}{|c|}{\begin{tabular}{l}
All \\
Principal Investigators
\end{tabular}} & \multicolumn{3}{|r|}{\begin{tabular}{l}
Nurse \\
Principal Investigators
\end{tabular}} & \multicolumn{3}{|r|}{\begin{tabular}{l}
Non-Nurse \\
Principal Investigators
\end{tabular}} \\
\hline & N & \[
\underset{\text { Funded }}{\$}
\] & \(\%\) of Total \$ & N & \[
\begin{gathered}
\$ \\
\text { Funded }
\end{gathered}
\] & \(\%\) of Total \$ & N & \[
\begin{gathered}
\$ \\
\text { Funded }
\end{gathered}
\] & \(\%\) of Total \(\$\) \\
\hline Rescarch & 6 & 63,930 & 1 & 6 & 63,930 & 4 & - & - & - \\
\hline Nursing Care & 54 & 4,130,813 & 62 & 13 & 694,658 & 50 & 41 & 3,436,155 & 66 \\
\hline Ciinical Training & 21 & 448,224 & 7 & 3 & 237,659 & 17 & 18 & 210,585 & 4 \\
\hline Development of Researchers & 1 & 386,000 & 6 & 1 & 386,000 & 27 & - & - & - \\
\hline Other & 26 & 1,617,695 & 24 & 5 & 29,078 & 2 & 21 & 1,588,617 & 30 \\
\hline TOTAL & 108 & \[
\begin{gathered}
6,646,682 \\
(100 \%)
\end{gathered}
\] & 100 & 28 & \[
\begin{gathered}
\overline{1,411,325} \\
(21 \%)
\end{gathered}
\] & 100 & 80 & \[
\begin{gathered}
\mathbf{5 , 2 3 5 , 3 5 7} \\
(79 \%)
\end{gathered}
\] & 100 \\
\hline
\end{tabular}

SOURCE: NIH Task Force on Nursing Research, December 1984.

The task force report does not analyze the awards for 1984. It does indicate, however, that there were 64 applications in 1984 from schools, departments, or colleges of nursing; that the total request from these applications was for \(\$ 6.4 \mathrm{million}\); and that the total award was \(\$ 1.5\) million.

The report states that there are 20 current intramural projects with nurse researchers as participants, through the Department of Nursing's Nursing Research Committee at the Clinical Center of NIH.

\section*{Veterans Administration}

The Veterans Administration (VA) supports nursing research in several areas. Nurses within the VA car receive support from the research components of the VA for medical research, health services research, and rehabilitation research. Resecrchers compete for awards with others in the VA. VA nurses seek and receive outside support as well; sources include HHS's Division of Nursing, the American Nurses' Foundation, Sigma Theta Tau, and various pharmaceutical companies.

Research responsibilities appear as a component of job descriptions for nurses in the VA for the intermediate grades and above. Research positions for nurses in VA Medical Centers include Associate Chief Nurse for Research, for which a doctorate is needed, and Nurse Researcher, requiring a master's or a Ph.D. The VA also has a trainee program for chief nurses, including both research and administrative training.

The VA lists 190 approved research projects with nurses as principal investigators for FY 1984. They are broken down by position of research and area of research as shown in Table 6.10. Of these projects, nearly 80 percent are in the clinical area, and the VA reports that this proportion has been growing over the past several years. The clinical projects are further broken down into the areas of nursing procedures (25), quality of life (19), patient education (17), patient experience (14), nursing intervention (13), nutrition (13), quality of care (10), patient behavior (8), injection (6), rest/exercise (6), incontinence (6), pain (3), and miscellaneous (11).

The Gerontologic Nurse Fellowship Program provides salary and dissertation support for doctoral nursing students for a two-year period. Two fellows are chosen each fiscal year; during the fellowship period, each participant is based at one of the 172 VA Medical Centers. The VA anticipates that at least half of those who complete the program will be hired by the VA.

\section*{American Nurses' Foundation}

The American Nurses' Foundation, a body of the American Nurses' Association, awards grants to nurses through its Competitive Extramural Grants Program. The program is funded by corporate and individual contributions to the foundation. proposals are evaluated by the Foundation's Research Review Committee, made up of experienced researchers holding doctorates. In 1981, 10 of 69 applications were funded; in 1982, 12 of 86 ; in 1983, 25 of 109; and in 1984, 34 of 119.

TABLE 6.10 V.A. Research Projects with Nurse Principal Investigators, by Position of Principal Investigator and Area of Research, FY 1984
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Position of \\
Principal Investigator
\end{tabular}} & \multicolumn{4}{|c|}{Area of Research} \\
\hline & Clinical & Administration & Education & Total \\
\hline Staff Nurse & 24 & 4 & 1 & 29 \\
\hline Head Nurse & 12. & - & - & 12 \\
\hline Instructor & 6 & - & 5 & 11 \\
\hline ACNS/E & - & 3 & 2 & 5 \\
\hline Nurse Practitioner & 5 & 1 & - & 6 \\
\hline Infection Control Nurse & 12 & 1 & - & 13 \\
\hline Clinical Specialist & 27 & 3 & 4 & 34 \\
\hline Supervisor/Coordinator & 7 & 2 & 1 & 10 \\
\hline ACNS & - & 3 & - & 3 \\
\hline Nurse Researcher & 6 & 1 & 1 & 8 \\
\hline ACNS/Researcher & 14 & 6 & - & 20 \\
\hline Oiher & 38 & & 1 & 39 \\
\hline TOTAL & 151 & \(\overline{24}\) & 15 & 190 \\
\hline
\end{tabular}

SOURCE: Veizrans Administration.

The grants program supports ..xisig research directed by a registered nurse. It is designed primarily for beginning nurse researchers, but experiencec researchers entering a new area of investigation are also considered for awards. From 1955 through 1984, the program awarded 206 grants for a total of more than \(\$ 1\) million. In 1985 , 32 grants of up to \(\$ 2,500\) each are expected to be awarded.

\section*{Robert Wood Johnson Foundation}

The Robert Wood Johnson Foundation supports nursing research through its grants program and through its relatively new Clinical Nurse Scholars Program. Since 1982, the Foundation has supported, or is supporting, 17 projects in the area of nursing research, for a total commitment of \(\$ 3.5\) million. Research subjects have included "Increasing Communication Ability in Stroke Patients," "Program to Improve Health Outcomes for Teenage Mothers and Their Infants," "Survey of the Role of Nurse Midwives in United States Health Care," and "Sources of Nurse Satisfaction and Nursing Shortages in Hospitals."

The Clinical Nurse Scholars Program supports individual researchers during two-year postdoctoral fellowships for advanced, in-hospital clinical practice and research. Scholars are based at the academic health centers of one of three institutions: the University of California, San Francisco; the University of Pennsylvania; or the University of Rochester. The first group of nine scholars received awards for 1983-85, and nine additional scholars were funded for 1984-85 and for 1985-86. Up to nine awards may be made each year.

The goal of the program is to prepare a group of nursing faculty and clinicians who can place renewed emphasis on clinical teaching, practice, and research at their own institutions. Applicants must be registered nurses with earned doctorate degrees. Most recipieni.s take a leave of absence from their employing institutions in order to accept the fellowship; stipends are based on the recipient's cursent: salary level. A total of \(\$ 3.3\) million has been allocated to this program thus far; much of this amount was in start-up and administrative costs.

\section*{Sigma Theta Tau}

Sigma Theta Tau, the national honor society of nursing has awarded a small number of nursing research grants each year since 1936. The purpose of its grant program is "to encourage qualified nurses to contribute to the advancement of nursing through research." Applicants must be registered nurses holding a master's degree or a doctorate. The maximum award is for \(\$ 3,000\). In 1984, the program received 33 applications. Ten were funded, for a total of \(\$ 27,532\). Local chapters of Sigma Theta Tau commonly make a small number of research awards each year, usually not exceeding \(\$ 1,000\), to their members.

\section*{NURSES WITH DOCTORAL DEGREE}

\section*{Doctorate Degrees Awarded}

The number of nurses receiving doctorates each year has been accelerating since 1978 (Figure 6.2). Data from the National League for Nursing show that 31 doctorates were awarded to nurses in academic year 1964-65; by 1981-82 that number had increased to 204.

Many nurses earn doctorates in fields other than nursing, however. According to the American Nurses' Association, \({ }^{2}\) before 1950 nurses earned the Ph.D. and the Ed.D. in equal numbers; between 1950 and 1964, more than half received Ed.D. degrees; but since 1965, the Ph.D. has been the most prevalent of doctoral degrees earned by nurses. The nursing science doctorates, D.N.S. and D.N.S.e., have been awarded only since the 1960's, but their numbers have been increasing. of the 3,648 nurses with doctorates surveyed by ANA in its 1984 study, 53.9 percent held the Ph.D., 32.5 percent the EJ.D., and 7 percent the D.N.S./D.N.Sc. The remaining 6.6 percent had other doctoral aigrees. \(^{\text {d }}\)

The ANA's 1984 survey also collected data on the major area of the degree awarded. Respondents reported that 37 percent of the degrees were in education, 12 percent in nursing, 3 percent in public health, and 4 percent in the biomedical sciences. The remainder had a variety oí major areas or did not report a major area.

\footnotetext{
\({ }^{2}\) For its 1980 survey, the ANA identified 2,348 U.S. nurses with earned doctorates. Of these, 1,964 completed and returned the questionnaires (83.6 percent response).
}

FIGURE 6.2 Research doctorates awarded to nurses, 1965-82 (academic years). Data are from the National League for Nursing (1981-84).

The federal government has been the most common source of support for nurses during doctoral study. Since 1950 more than 40 percent of the nurses with doctorates who had outside support while studying for the degree received that support from a federal grant for training or research (ANA, 1981, p. 37).

\section*{Doctoral Programs in Nursing}

The number of doctoral programs in nursing also has been increasing steadily over the past 20 years (Figure 6.3). According to the NLN, in 1962-63 there were four programs in nursing schools or departments that awarded doctorates. In 1983-84 there were 30 such programs. Of that number, 21 granted the Ph.D. degree, 8 awarded a nursing science degree, and 1 awarded the Ed.D. (Table 6.11).

The enrollment of nurses in doctoral programs has been increasing as well (Figure 6.4). The NLN reports that much of this increase is due to the rising number of part-time students.

FIGURE 6.3 Research doctoral programs administered by schools or departments of nursing, 1963-84 (academic years). Data are from the National League for Nursing (1981-84).

TABLE 6.11 Doctcral Programs in Nursing, 1983-84
\begin{tabular}{lc}
\hline Degree Granted & Number of Progrי?: \\
\hline Ph.D. & 21 \\
D.N.Sc. & 3 \\
D.N.S. & 2 \\
D.S.N. & 2 \\
D.N. & 1 \\
Ed.D. & 1 \\
TOTAL & 30 \\
\hline
\end{tabular}

SOURCE: SIgma Theta Tau (1984a).

FIGURE 6.4 Nurses enrolled in research doctoral programs, 1965-83 (academic years). Data are from the National League for Nursing (1981-84).

Nurse Faculty with Doctorates
In nursing education programs, the number of faculty members who hold doctorates has been increasing but still is a small proportion of the total faculty (Figure 6.5). In 1982, only 8.4 percent of all full-time nurse-faculty members held doctorates; 16.1 percent of those employed in programs offering the baccalaureate and higher degrees held the doctorate. The NLN reports that of the 1,657 full-time nurse faculty holding doctorates, 92 percerit were employed in programs offering the baccalaureate and higher degrees.

\section*{Employment of Nurses with Doctorates}

In 1980, 91 percent of the nurses with doctorates were employed, most (88 percent) full-time (ANA, 1981). Approximately 6 percent were retired, and approximately 2 percent were in temporary positions. Only about \(l\) percent were reported to be unemployed and seeking employment.

FIGURE 6.5 Percentage of full-time nurse faculty who hold research doctorate degrees, 1964-82 (academic years). Data are from the National League for Nursing (1981-84).

By far the largest proportion of all nurses with doctorates (61 percent) were employed in schools of nursing offering the baccalaureate and higher degrees; 4 percent worked in schools of nursing offering less than the baccalaureate. Another 6 percent were faculty members in other departments of educational institutions. Government agencies (4 percent), hospitals (2 percent), and public health settings (l percent) accounted for the other specified employment settings of nurses with doctorates.

In institutions having both baccalaureate and higher degree programs in 1982, about 20 percent of full-time nurse faculty were assigned exclusively to the graduate programs, and another 18 percent were assigned part-time to graduate programs and part-time to baccalaureate programs. The remainder spent full-time with the undergraduate programs.

As indicated in Table 6.12, 4.6 percent of nurses with doctorates reported that their major function was research. This percentage was highest (18.1 percent) for those employed by government agencies. When broken down by degree (Table 6.13), the percentage was highest for those whose doctorate was in the biomedical sciences.

Table 6.14 shows the responses of nurses with doctorates as to what percentage of time is spent on research (ANA, 1981). Nurses in health professions schools other than nursing reported spending almost 30 percent of their time on research. Those in nursing programs at the baccalaureate and higher level spent only about 12 percent of their time on research.

TABLE 6.12 Registered Nurses with Doctoral Degrees, by Major Area of Degree and Major Function, 1980a
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Major Function} & \multicolumn{17}{|c|}{Major Area of Degree} \\
\hline & \multicolumn{2}{|c|}{Total} & \multicolumn{2}{|l|}{Nursing} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Public \\
Health
\end{tabular}} & \multicolumn{2}{|r|}{Other} & \multicolumn{2}{|l|}{Biomedical} & \multicolumn{2}{|l|}{Education} & \multicolumn{2}{|l|}{Humanities} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Social- \\
\(\xrightarrow{\text { Behavioral }}\)
\end{tabular}} & \multirow[t]{2}{*}{Not \(\frac{\text { Reporled }}{\mathrm{N}}\)} \\
\hline & N & \(\%\) & N & \% & N & \% & N & \(\%\) & N & \% & N & \(\%\) & N & \% & N & \% & \\
\hline Administration & 550 & 28.0 & 120 & 28.0 & 20 & 23.5 & , & 10.6 & 8 & 10.8 & 285 & 34.6 & 4 & 23.5 & 106 & 22.8 & - \\
\hline Clinical Practice & 42 & 2.1 & 12 & 2.8 & 1 & 1.2 & 6 & 9.1 & 2 & 2.7 & 4 & 0.5 & 3 & 17.6 & 14 & 3.0 & - \\
\hline Consulation & 34 & 1.7 & 6 & 1.4 & 4 & 4.7 & 1 & 1.5 & - & - & 16 & 1.9 & - & - & 7 & 1.5 & - \\
\hline Research & 91 & 4.6 & 15 & 3.5 & 6 & 7.1 & 2 & 3.0 & 11 & 14.9 & 21 & 2.5 & 2 & 11.8 & 34 & 7.3 & - \\
\hline Teaching & 598 & 30.4 & 153 & 35.7 & 27 & 31.8 & 7 & 10.6 & 28 & 37.8 & 216 & 26.2 & 3 & 17.6 & 162 & 34.8 & 2 \\
\hline Multiple Functions \({ }^{\text {b }}\) & 250 & 12.7 & 48 & 11.2 & 8 & 9.4 & 9 & 13.6 & 16 & 21.6 & 108 & 13.1 & 2 & 11.8 & 58 & 12.5 & 1 \\
\hline Other & 79 & 4.0 & 14 & 3.3 & 7 & 8.2 & 14 & 21.2 & 2 & 2.7 & 27 & 3.3 & - & - & 15 & 3.2 & - \\
\hline Not Keporteds & 320 & 16.3 & 61 & 14.2 & \(\underline{12}\) & 14.1 & 20 & 30.3 & \(?\) & 9.5 & 147 & \(\underline{17.8}\) & 3 & 17.6 & 69 & 14.8 & 1 \\
\hline TOTAL & 1,964 & 100.0 & 429 & 100.0 & 85 & 100.0 & 66 & 100.0 & 74 & 100.0 & 824 & 100.0 & 17 & 100.0 & 465 & 100.0 & 4 \\
\hline
\end{tabular}
a Percents may nol add to 100.0 due to rounding,
- Includes nurses who have a combination of functions, e.p, teaching, administration, and research,
- Includes nurses not employed.

SOURCE: American Nurses' Association, Center for Research, Salisticics and Dala Analysis Unil, a special tabulation from a study ofnurses with doctoral degrees, 1980 . Unpublished data.

TABLE 6.13 Registered Nurses with Doctoral Degrees, by Employment Setting and Major Function, 1980a
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{Major Function} & \multicolumn{18}{|c|}{Employment Selling} \\
\hline & \multicolumn{6}{|c|}{School of Nursing} & & & & & & & & & & & & \\
\hline & \multicolumn{2}{|c|}{Total} & \multicolumn{2}{|l|}{Baccalaureate or Higher} & \multicolumn{2}{|l|}{Less than Baccalaureate} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Other Sclooll \\
Department
\end{tabular}} & \multicolumn{2}{|l|}{Hospilal} & \multicolumn{2}{|l|}{Public Heallh} & \multicolumn{2}{|l|}{Government Agency} & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|l|}{Not Reported} \\
\hline & N & \% & N & \% & N & \% & N & \% & N & \(\%\) & N & \% & N & \% & N & \% & N & \(\%\) \\
\hline Administration & 550 & 28.0 & 378 & 31.5 & 34 & 43.0 & 33 & 27.0 & 29 & 59.2 & 10 & 52.6 & 29 & 34.9 & 26 & 16.3 & 11 & 4.3 \\
\hline Clinical Practice & 42 & 2.1 & 4 & 0.3 & - & - & 2 & 1.6 & 3 & 6.1 & 5 & 26.3 & 2 & 2.4 & 25 & 15.6 & 1 & 0.4 \\
\hline Consulation & 34 & 1.7 & 2 & 0.2 & 1 & 1.3 & 1 & 0.8 & 1 & 2.0 & 1 & 5.3 & 13 & 15.7 & 14 & 8.8 & 1 & 0.4 \\
\hline Research & 91 & 4.6 & 50 & 4.2 & - & - & 5 & 4.1 & 6 & 12.2 & 1 & 5.3 & 15 & 18.1 & 14 & 8.8 & - & - \\
\hline Teaching & 598 & 30.4 & 514 & 42.9 & 29 & 36.7 & 42 & 34.4 & 2 & 4.1 & - & - & 1 & 1.2 & 3 & 1.9 & 7 & 2.8 \\
\hline Mulliple Funclions \({ }^{\text {b }}\) & 250 & 12.7 & 166 & 13.8 & 10 & 12.7 & 23 & 18.9 & 4 & 8.2 & 1 & 5.3 & 12 & 14.5 & 31 & 19,4 & 3 & 1.2 \\
\hline Other & 79 & 4.0 & 36 & 3.0 & 1 & 1.3 & 8 & 6.6 & 1 & 2.0 & - & - & 5 & 6.0 & 24 & 15.0 & 4 & 1.6 \\
\hline Not Reported \({ }^{\text {d }}\) & 320 & 16.3 & 49 & 4.1 & 4 & 5.1 & 8 & 6.6 & 3 & & & 5.3 & 6 & 7.2 & 23 & & 226 & 89.3 \\
\hline TOTAL & 1,964 & 100.0 & 1,199 & 100.0 & 79 & 100.0 & 122 & 100.0 & 49 & 100.0 & 19 & 100.0 & 83 & 100,0 & 160 & 100.0 & 253 & \\
\hline
\end{tabular}
a Percents may not add to 100.0 due to rounding.
\({ }^{6}\) Includes nurses who have a combination of functions, e.p. teaching, administration, and research,
\({ }^{\text {c }}\) Includes nurses not employed.
SOURCE: American Nurses' Association, Center for Research, Statistics and Data Analysis Unit, a special labulation from a study of nurses withdoctoral degrees, 1980. Unpublished data.

TABLE 6.14 Average Percentage of Time Spent in Research by Work Setting and Percentage of Nurses with Doctorates, 1980
\begin{tabular}{|c|c|c|}
\hline Setting & \[
\begin{gathered}
\text { \% Time } \\
\text { in Research } \\
\hline
\end{gathered}
\] & \% of Nurses with Doctorates \\
\hline School of Nursing (Baccalaureate and Higher) & 11.8 & \\
\hline School of Nursing (Hospital) & 0.8 & 70.1 \\
\hline School of Nursing (Associate Digree) & 2.3 & \\
\hline Other Health Professlonal School & 28.4 & 4.6 \\
\hline Other Department or School & 11.1 & \\
\hline Hospital in Service & 11.5 & 7.1 \\
\hline Hospital Nursing Administration Work & 12.3 & \\
\hline Public/Community Health Agency & 4.0 & 2.9 \\
\hline Federa/State/Local Government & 20.6 & 6.0 \\
\hline Other & 14.3 & 9.3 \\
\hline & & 100.0 \\
\hline
\end{tabular}

SOURCE: American Nurses' Association (1981).

\section*{SUMMARY}

In 1983, an Institute of Medicine committee (IOM, 1983a, p. 149) conclu'. ' chat:

Unlike the situation with respect to the basic supply of generalist nurses, where we have found the likelihood of a general balance between supply and demand in 1990, the committee concludes that there is both a serious current and probable 1990 shortage of nurses educationally prepared for administration, teaching, research, and advanced clinical nursing specialties. ... there is such an obvious gap between the present supply ... and even conservative estimates of future advanced positions required ... that existing program capacity and sources of student support at the graduate level should be expanded.

We agree with these findings. The low rate of unemployment of nurses with doctorates, the low percentage of nurse faculty members with doctorates, and the rapid growth in the number of doctoral programs in nursing lead the committee to conclude, even in the ahsence of numerical projections, that there is and will continue to be unfilled demand for researchers in this area.

There is also a growing need for training support in nursing research. In FY 1985, appropriations for NRSA programs of the Division of Nursing more than doubled from the previous year to \(\$ 2\) million, and the number of trainees and fellows increased to 168. Applications for fellowships increased by about 50 percent in FY 1985 and are expected to increase by another 30 percent in FY 1986.

NRSA fellowship: and traineeships constitute one of the principal sources of support for nurses pursuing predoctoral and postdoctoral research training. However, the committee notes that funding levels, although increasing, have not been sufficient to allow programs to reach the levels it has recommended in the past. The importance of the proble...s addressed in nursing research, the continued demand for nurse faculty with research training, and the growing pool of fellowship applicants all indicate that nursing research is a rapidly developing area. Research training levels should be raised from the current number (168 in FY 1985) to about 320 in 1990.

\section*{BIBLIOGRAPHY}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{```
Gillis, C.N.
 1979 "The kole of the Basic Sciertist in an Academic Clinical
 Setting." Federation Proceedings, vol. 38, pp. 2355-2358.
```} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Graduate Medical Education National Advisory ©mmittee 1981 Report to the Secretary, Dept. Oi Fralth and Human}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{Services, Vol. I, Summary Report. DHHS Publication No.} \\
\hline \multicolumn{2}{|r|}{(HRA) 81-651. Washington, D.C.: Health zesources Administration, April.} \\
\hline \multicolumn{2}{|l|}{Hadley, Jack} \\
\hline 1982 N & More Health Care, Better Health? Washington, D.C.: Urban \\
\hline \multicolumn{2}{|r|}{Institute Press.} \\
\hline \multicolumn{2}{|l|}{Health Care Financing Administration} \\
\hline \multicolumn{2}{|l|}{Research and Demonstrations in Health Care Financing.} \\
\hline \multicolumn{2}{|r|}{Washington, D.C.: HCFA, October.} \\
\hline \multicolumn{2}{|l|}{Herman, Samuel S., and Allen M. Singer} \\
\hline \multicolumn{2}{|l|}{1985 Basic Scientists in Clinical Departments: A Fast Growing} \\
\hline \multicolumn{2}{|r|}{Component of Medical School Faculties. Washington, D.C.} \\
\hline \multicolumn{2}{|r|}{J.n press.} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Huber, Bettina \(J\). \\
1985 Employment Patterns in Sociology: Recent Trends and Future
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{Prospects. Washington, D.C.: American Sociological} \\
\hline \multicolumn{2}{|r|}{Association.} \\
\hline \multicolumn{2}{|l|}{Institute of Medicine} \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
on Health Services Research. Washington, D.C.: National Academy of Sciences. \\
Nursing and Nursing Education: Public Policies and Private
\end{tabular}} \\
\hline 1983a & \\
\hline \multicolumn{2}{|r|}{Actions. Report of the Committee on Nursing and Nursing} \\
\hline & \multirow[t]{2}{*}{Education. Washington, D.C.: National Academy Press. Personnel Needs and Training for Biomedical and Behavioral} \\
\hline 1983b & \\
\hline \multicolumn{2}{|r|}{Research. Annual/biennial reports of the Committee on} \\
\hline \multicolumn{2}{|r|}{National Needs for Biomedical and Behavioral Research} \\
\hline \multicolumn{2}{|r|}{Personnel. Reports for 1975-81 were prepared under the} \\
\hline & auspir for National Research Council. Washington, D.C. National Academy Press. \\
\hline 1985 P & Preventing Lo. Birthweight. Washington, D.C.: National \\
\hline & Academy Press. \\
\hline \multicolumn{2}{|l|}{Kaplan, N.M.} \\
\hline 1980 & "The Control of Hypertension: A Therapeutic Breakthrough." \\
\hline & American Scientist, vol. 68, pp. 537-545. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Kasl, S.V., A.S. Evans, and J.C. Niederman \\
1979 "Psychosocial Risk Factors in the Development of Infectious
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{Mononucleosis." psychosomatic Medicine, vol. 4l, pp. 445-467} \\
\hline \multicolumn{2}{|l|}{Kennedy, Donald} \\
\hline 1985 " & "Government Policies and the Cost of Doing Research." \\
\hline & Science, vol. 227, February. \\
\hline
\end{tabular}


National Commission on Research
\(1980 \quad \frac{\text { Funding Mechanisms: Balancing Objectives and Resources }}{\text { in University Research. Washington, D.C.: National }}\)

National Institutes of Health
1966-84 Office of Program Planning and Evaluation. Basic Data Relating to the National Institutes of Health. Washington, D.C.: U.S. Government Printing Office (annual).
1973-78 NIH Manpower Report. A computerized data file computed from an annual survey of personnel contributing to research grants of NIH. Washington, D.C.
1975 Clinical Trials Committee. "Issue Paper on Clinical Trials." Bethesda, Md. Unpublished.
1976 a Forward Plan for Health, FY 1978-82. Washington, D.C.: U.S. Government Printing Office, August.

1976b National Heart and Lung Institute. Proceedings of the National Heart and Lung Institute Working Conference on Health Behavior (May 12-15, 1975). Stephen M. Weiss, ed. DHEW Publication No. (NIH) 76-868. Washington, D.C.: U.S. Government Printing Office.
1977a The Job Market for Biomedical Scientists in 1975.
1977b National Institute of Neurological and Communicative Disorders and Stroke. Manpower in Basic Neurologic and Communicative Sciences: Present Status and Future Needs. Prepared under contract by the NAS/NRC Committee on Manpower Needs for Teaching and Research in Basic Neurologic and Communicative Sciences. DHEW Publication No. (NIH) 78-1469. Washington, D.C.: U.S. Government Printing Office.
1979 Division of Research Grants. Manpower Report 2r Training Supported by NIH Research Grants, Training Grants and Fellowships. FY1976 Supplement. Bethesda, Md.
1983a Division of Research Grants, Statistics and Analysis Branch. Computer retrieval of information on scientific projects. Bethesda, Md.
1983b "Instructions for Reporting Obligations for Medical and Health-Related Research and Development." December.
1983c National Institute of Dental Research. Challenges for the Eighties. National Institute of Dental Research Long-Range Research Plan, FY 1985-89. Washington, D.C.: U.S. Government Printing Office, December.
1984 NIH Task Force on Nursing Research: Report to the Director. Washington, D.C.: U.S. Department of Health and Human Services.

National League for Nursing
1981-84 NLN Nursing Data Book. New York: National League for Nursing (annual).
\begin{tabular}{cl} 
National Research Council \\
1958-85 & Commission on Human Resources. Survey of Earned \\
& Doctorates. A computerizec data file computed from \\
& an annual survey of doctorate degrees awarded in U.S. \\
institutions. Washington, D.C.
\end{tabular}



\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{U.S. Department of Education (formerly Office of Education). National}} \\
\hline & \\
\hline \multirow[t]{2}{*}{1948-81} & Earned Degrees Conferred. Washington, D.C.: U.S. \\
\hline & Government Printing Office (annual). \\
\hline \multirow[t]{2}{*}{1948-84} & Degrees and Other Formal Awards Conferred (Higher Education \\
\hline & General Information Survey) . A computerized data file. Washington, D.C. \\
\hline \multirow[t]{2}{*}{1959-79} & Students Enrolled for Advanced Degrees. Washington, \\
\hline & D.C.: U.S. Government Printing Office (annual). \\
\hline \multirow[t]{3}{*}{1961-84a} & Fall Enrollment in Higher Education (formerly entitled \\
\hline & Opening (Fall) Enrollment). Washington, D.C.: U.S. \\
\hline & Government Printing Office (annual). \\
\hline \multirow[t]{3}{*}{1961-84b} & Fall Enrollment and Compliance Report of Institutions of \\
\hline & Higher Education (Higher Education General Information \\
\hline & Survey). A computerized data file. Washington, D.C. \\
\hline \multirow[t]{2}{*}{1973-82} & Projections of Educational Statistics. Washington, \\
\hline & D.C.: U.S. Government Printing Office (annual). \\
\hline \multirow[t]{2}{*}{1974-83} & Digest of Education Statistics. Washington, D.C.: \\
\hline & U.S. Government Printing Office (annual). \\
\hline \multirow[t]{2}{*}{1980} & The Condition of Education. Washington, D.C. \\
\hline & U.S. Government Printing Office (annual). \\
\hline \multicolumn{2}{|l|}{U.S. Department of Health and Human Services (formerly Health,} \\
\hline \multicolumn{2}{|l|}{Education, and Welfare)} \\
\hline \multirow[t]{2}{*}{1967} & Office of the Secretary. proceedings of the White \\
\hline & House Conference on Health, November 3 and 4, 1965. \\
\hline \multirow{6}{*}{1971} & Washington, D.C.: U.S. Government Printing Office. \\
\hline & Office of the Assistant Secretary for Health and \\
\hline & Scientific Affairs. First Special Report to the U.S. \\
\hline & Congress on Alcohol and Health. DHEW Publication No. \\
\hline & (HSM) 73-9031. Washington, D.C.: U.S. Gorosnmeat \\
\hline & Printing Office, December. \\
\hline \multicolumn{2}{|l|}{Ware, John E.} \\
\hline \multirow[t]{2}{*}{1985} & "Monitoring and Evaluating Health Services." Medical Care, \\
\hline & vol. 23, no. 5, May. \\
\hline \multicolumn{2}{|l|}{Wolanin, Mary Opal} \\
\hline \multirow[t]{3}{*}{1984} & "Clinical Geriatric iursing Research." In Annual Review of \\
\hline & Nursing Research. Vol. I., Harriet H. Werley and Joyce J. \\
\hline & Fitzpatrick, eds. New York: Springer. \\
\hline \multicolumn{2}{|l|}{Wyngaarden, James} \\
\hline \multirow[t]{3}{*}{1979} & "The Clinical Investigator as an Endangered Species." \\
\hline & New England Journal of Medicine, vol. 301, December, \\
\hline & pp. 1254-1259. \\
\hline \multicolumn{2}{|l|}{Zusman, Randall M.} \\
\hline \multirow[t]{2}{*}{1983} & "The Expanding Role of the Basic Scientist in Clinical \\
\hline & Medicine." Clinical Research, vol. 31, no. 2, pp. 144-145. \\
\hline
\end{tabular}

\section*{APPENDIX A}

Medical and Dental School Data
\begin{tabular}{|c|c|c|}
\hline TABLE AI & Students in U.S. Medical Schools, by Control of Institution, 1961-84 & 161 \\
\hline A2 & Faculty in U.S. Medical Schools, by Control of Institution, 1961-84 & 162 \\
\hline A3 & Clinical Sciences Faculty/Student Ratio, by Control of Institution, 1963-84 & 163 \\
\hline A4 & M.D. Graduates of U.S. Medical Schools, by Control of Institution, 1961-84 & 164 \\
\hline A5 & Full-Time Budgeted Vacancies on U.S. Medical School Faculties, by Control of Institution, 1961-84 & 165 \\
\hline A6 & Primary Activity of Physicians in the U.S., 1963-83 & 166 \\
\hline A 7 & \(R\) and \(D\) Expenditures in U.S. Medical Schools, by Control of Institution, 1962-84 (\$ thousands) & 167 \\
\hline A8 & Professional Service Income in U.S. Medical Schools, by Control of Institution, 1962-84 (\$ thousands) & 169 \\
\hline A9 & Average Clinical \(R\) and \(D\) Expenditures and Professional Service Income per U.S. Medical School, by Control of Institution, 1962-84 (1972 \$, thousands) & 170 \\
\hline Al0 & Clinical \(R\) and \(D\) Expenditures + Professional Service Income in U.S. Medical Schools, by Control of Institution, 1962-84 (1972 \$, thousands) & 171 \\
\hline All. 1 & Sources of Revenue in U.S. Medical Schools, 1959-83 (current \(\$\), millions) & 172 \\
\hline All. 2 & Sources of Revenue in U.S. Medi::al Schools, 1959-83 (1972 \$, millions) & 173 \\
\hline A12 & Stuãonts in U.S. Dental Schools, by Control of In:stitution, 1961-84 & 174 \\
\hline Al3 & Faculty in U.S. Dental Schools, by Control of Institution, 1969-84 & 175 \\
\hline
\end{tabular}

APPENDIX A. (cont'd.)
Medical and Denthiseme: Betn
\begin{tabular}{|c|c|c|}
\hline TABLE Al4 & Research and Development Revenue and Expenditures in U.S. Dental Schools, by Control of Institution, 1968-83 (\$ thousands) & 176 \\
\hline A15 & Dental Clinic Revenue in U.S. Dental Schools, by Control of Institution, 1968-83 (\$ thousands) & 177 \\
\hline A16 & Dental School Tuition Revenue, by Control of Institution, 1968-83 (\$ thousands) & 178 \\
\hline A17 & Revenue from State and Local Governments in U.S. Dental Schools, by Controi of Institution, 1968-83 (\$ thousands) & 179 \\
\hline A18 & Total Revenue in U.S. Dental Schools, by Control of Institution, 1968-83 ( \(\$\) thousands) & 180 \\
\hline A19 & Full-Time Budgeted Vacancies on U.S. Dental School Faculties, by Control of Institution, 1969-84 & 181 \\
\hline A20 & NIH Trainees and Fellows in Clinical Dental Research, 1977-84 & 182 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{All Schools} & \multicolumn{4}{|l|}{Public Schools} & \multicolumn{4}{|l|}{Private Schools} \\
\hline \begin{tabular}{l}
Fiscal \\
Year
\end{tabular} & Total & Medical Students & Interns Residents & Clinical Fellows & Iotal & Hedical Students & \begin{tabular}{l}
Interns 1 \\
Residentsb/
\end{tabular} & \begin{tabular}{l}
Clinical \\
Fellowsb/
\end{tabular} & Total & Medical
studstais & Interns 1 Residents & CInical fellows \\
\hline 1961 & 49,899 & 30,688 & 16,970 & 2,241 & 25,115 & 15,954 & 8,362 & 799 & 24,784 & 14,734 & 8,608 & 1,422 \\
\hline 1962 & 52,014 & 31,007 & 12,362 & 3,575 & 26,412 & 16,211 & 8,237 & 1,964 & 25,602 & 14,806 & 9,125 & 1,611 \\
\hline 1963 & 52,219 & 31,238 & 17,380 & 3,601 & 26,198 & 16,432 & 8,292 & 1,474 & 26,021 & 14,806 & 9,088 & 2,127 \\
\hline 1564 & 54,181 & 32,001 & 17,956 & 4,224 & 27,292 & 17,012 & 8,408 & 1,872 & 26,889 & 14,989 & 9,546 & 2,352 \\
\hline 1965 & 55,170 & 32,106 & 18,991 & 4,073 & 27,561 & 17,116 & 9,999 & 1,446 & 27,609 & 14,990 & 9,992 & 2,621 \\
\hline 1966 & 56, 10 & 32,482 & 19,950 & 3,669 & 28,610 & 17,406 & 9,959 & 1,245 & 27,491 & 15,016 & 9,991 & 2,424 \\
\hline 1967 & 57,618 & 35,192 & 20,290 & 4,185 & 29,350 & 17,906 & 9,932 & 1,520 & 26,260 & 15,236 & 10,358 & 2,666 \\
\hline 1558 & 61,684 & 34,318 & 22,044 & 5,322 & 32,308 & 18,631 & 11,330 & 2,347 & 29,376 & 15,687 & 10,714 & 2,975 \\
\hline 1969 & 63,530 & 35,102 & 23,462 & 1,966 & 33,153 & 19,024 & 11,930 & 2,199 & 30,317 & 16,078 & 11,532 & 2,167 \\
\hline 1970 & 67,785 & 37,978 & 27,003 & 2,804 & 35,309 & 21,002 & 12,848 & 1,379 & 32,476 & 16,896 & 14, 125 & 1,425 \\
\hline 1971 & 71,500 & 40,476 & 27,440 & 3,584 & 37,133 & 29,616 & 13,956 & 1,161 & 33,761 & 17,860 & 13,484 & 2,423 \\
\hline 1972 & 81,564 & 43,576 & 31,722 & 6,266 & 44,169 & 24,500 & 16,657 & 3,0125 & 37,395 & 19,076 & 15,065 & 3,2546/ \\
\hline 1973 & 86,914 & 47,523 & 33,111 & 6,274 & 47,429 & 26,830 & 16,954 & 3,645 \({ }^{\text {a }}\) & 39,485 & 20,693 & 16,163 & 2,6296] \\
\hline 1974 & 91,515 & 50,242 & 35,644 & 5,629 & 50,230 & 28,753 & 18,808 & 2,669 \({ }^{\text {d }}\) & 41,285 & 21,469 & 16,836 & 2,960 \({ }^{\text {c/ }}\) \\
\hline 1975 & 95,273 & 54,076 & 36,213 & 4,984 & 51,677 & 30,826 & 19,159 & 1,692 & 43,596 & 23,250 & 11,054 & 3,292 \\
\hline 1976 & 100, 152 & 56,244 & 38,370 & 5,538 & 55,561 & 32,417 & 20,625 & 2,519 & 44,591 & 23,827 & 11,45 & 3,019 \\
\hline 1977 & 103,061 & 58,266 & 39,431 & 5,364 & 57,364 & 33,932 & 21,141 & 2,291 & 45,697 & 24,334 & 18,290 & 3,013 \\
\hline 1978 & 106,868 & 60,424 & 41,222 & 5,222 & 59,880 & 35,633 & 21,992 & 2,255 & 46,988 & 24,791 & 19,230 & 2,967 \\
\hline 1979 & 112,770 & 62,582 & 44,951 & 5,237 & 64,024 & 37,265 & 24,219 & 2,540 & 48,746 & 25,317 & 20,732 & 2,697 \\
\hline 1980 & 116,511 & 61,020 & 46,715 & 5,716 & 66,335 & 38,234 & 25,170 & 2,931 & 50,176 & 25,786 & 21,695 & 2,785 \\
\hline 1981 & 118,283 & 65,412 & & 6,294 & 67,091 & 35,425 & 24,628 & 3,038 & 51,192 & 25,987 & 21,949 & 3,256 \\
\hline 1982 & 123,983 & 66,489 & 50,381 & 1,123 & 70,601 & 40,132 & 26,791 & 3,678 & 53, 387 & 26,352 & 21,590 & 3,445 \\
\hline 1983 & 126,024 & 66,886 & 51,704 & 1,434 & 11,323 & 40,410 & 27,178 & 3,135 & 54,701 & 26,476 & 24,520 & 3,699 \\
\hline 1984 & 127,879 & 67,437 & 53,297 & 7,145 & 73,251 & 40,795 & 28,835 & 3,621 & 54,628 & 26,642 & 24,462 & 3,524 \\
\hline
\end{tabular}
d/Figures were obtained from the Association of Anerican Medical Colleges (1972-85, snecial tabulations of \(4 / 8 / 82,5 / 77 / 82,6 / 15 / 83,7 / 10 / 84\) and 2/5/85). Because Allc data kere incomplete, figures for all Items in 1962 and for cilinical feiious in 1969 were obtadined from the Anerican Hedical Association (1960-84).
b/Includes only Individuals in accredited prograns affiliated with nedical schools.
c/Includes graduate students.
d/Interpolated.

APPENDIX TAQLC A2 Faculty in U.S. Medical Schools, by Control of Institution, 1961-84

d/Figures were obtained from the Association of American Medical Colleges (1972-85, special tabulations' of 4/8/82,5/17/82,6/15/33, 7/10/84, and 2/5/55). Because AAMC data were incomplete, total full-time faculty figures for 1962 were obtained from the American Medical Association ( 1960 - 84 ); public and private figures for 1962 were estimated by the committee.

6/From the American Medical Association (1960-84).

APPENOIX TABLE AS Clinical Sciences Facultyistudent Ratio, by Control of Institution, 1963-84a/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Fiscal Year} & \multicolumn{3}{|l|}{All Schnil:} & \multicolumn{3}{|l|}{Public Schools} & \multicolumn{3}{|l|}{Private Schools} \\
\hline & Clinic & :-. . Meighted & Clinical faculty/ & Clinical & 4-ir. Heighted & Clinical Facultyl & Clinical & 4.Yr. Heighted & Clinical Fac. \\
\hline & \begin{tabular}{l}
Fdcul: \\
(CF)
\end{tabular} & \begin{tabular}{l}
Enrolment \\
(HS)
\end{tabular} & Student Ratio (CF/WS) & \begin{tabular}{l}
Faculty \\
(CF)
\end{tabular} & \begin{tabular}{l}
Avg. Enrollment \\
(HS)
\end{tabular} & Student Ratio (CF/WS) & \begin{tabular}{l}
Foculty \\
(CF)
\end{tabular} & \begin{tabular}{l}
Avg. Enrol Iment \\
(HS)
\end{tabular} & Student Ratio (CF/WS) \\
\hline 1963 & 8,909 & 51,209 & \(0.174^{6 /}\) & 3,988 & 25,850 & \(0.1510 /\) & 4,921 & 25,35: & 0.19461 \\
\hline 1964 & 9,474 & 52,091 & 0.182 & 4,390 & 26,271 & 0.167 & 5,089 & 25,820 & 0.197 \\
\hline 1965 & 10,649 & 53, 331 & 0.200 & 5,157 & 26,826 & 0.192 & 5,49? & 26,505 & 0.207 \\
\hline 1966 & 11,447 & 54,504 & 0.210 & 5,552 & 27,419 & 0.20 ? & 5,895 & 21,085 & 0.218 \\
\hline 1967 & 13,420 & 55,724 & 0.241 & 5,361 & 28, 165 & 0.226 & 1,059 & 27,558 & 0.256 \\
\hline 1968 & 15,654 & 57,382 & 0.273 & 7,702 & 29,301 & 0.263 & 1,952 & 28,081 & 0.283 \\
\hline 1969 & 15,986 & 59,706 & 0.268 & 7,559 & 30,849 & 0.245 & 8, 427 & 28,827 & 0.292 \\
\hline 1970 & 16,806 & 62,639 & 0.268 & 8,092 & 32,598 & 0.248 & 8,714 & 30,010 & 0.290 \\
\hline 1971 & 19,256 & 65,969 & 0.292 & 9,085 & 34,494 & 0.263 & 10,171 & 31,475 & 0.323 \\
\hline 1972 & 21,456 & 70,611 & 0.304 & 9,946 & 31,234 & 0.267 & 11,510 & 33,316 & 0.395 \\
\hline 1973 & 23,884 & 76,805 & 0.311 & 10,665 & 41,090 & 0.260 & 13,219 & 35,114 & 0.310 \\
\hline 1974 & 24,950 & 83,329 & 0.299 & 11,059 & 45,193 & 0.245 & 13,881 & 38,135 & 0.364 \\
\hline 1975 & 26,846 & 88,949 & 0.302 & 12,332 & 48,527 & 0.254 & 14.514 & 40,42? & 0.359 \\
\hline 1976 & 28,603 & 93,440 & 0.305 & 13,746 & 51,134 & 0.269 & 14,857 & 42,306 & 0.351 \\
\hline 1971 & 30,399 & 9:,511 & 0.311 & 14,436 & 53,678 & 0.269 & 15,913 & 43,893 & 0.363 \\
\hline 1978 & 32,622 & 101,428 & 0.322 & 16,474 & 56,235 & 0.293 & 16,148 & 45,193 & 0.357 \\
\hline 1979 & 34,057 & 105,463 & 0.323 & 17,242 & 59,01? & 0.292 & 16,815 & 46,451 & 0.362 \\
\hline 1980 & 36,665 & 109,808 & 0.334 & 18,983 & 61,918 & 0.307 & 17,682 & 47,890 & 0.369 \\
\hline 1981 & 37,716 & 113,952 & 0.331 & 19, 1824 & 64,615 & 0.295 & 18,632 & 49,337 & 0.378 \\
\hline 1982 & 40,148 & 117,724 & 0.341 & 19,665 & 66,913 & 0.297 & 20,283 & 50,01: & 0.399 \\
\hline 1983 & 41,938 & 121,180 & 0.346 & 21, 197 & 68,840 & 0.308 & 0, 0.74 & 52,399 & 0.396 \\
\hline 1984 & 43,443 & 124,364 & 0.349 & 21,492 & 70,698 & 0.304 & 21,951 & 53,6,5 & 0.409 \\
\hline
\end{tabular}
a/Faculty is defined as all full-time faculty employed in clinical science departments of U.S. medical schools. Students are defined as a 4 -year weighted average of enrollments, i.e., \(\left(H S S_{t}=1 / 6\left(S_{t} \times 2 S_{t-1}+2 S_{t-2}+S_{t-3}\right)\right.\), where \(S=\) total enrollments of medical students, interns, residents, and clinical fellows. Totals may not sim due to rounding, See lippendix lable Al for supporting data.
b/ Estimated by the comittee.

APPENDIX TABLE A4 M.D. Graduates of U.S. Medical Schools, by Control of institution,
196i-84
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{F :cal Year} & \multicolumn{3}{|l|}{M.D. Graduates \({ }^{\text {/ }}\)} & \multicolumn{3}{|l|}{Number of Medical Schools b/} \\
\hline & Total & Public & Private & Total & Public & Private \\
\hline 1961 & 6,994 & n/a & \(\mathrm{n} / \mathrm{a}\) & 86 & 44. & 42 \\
\hline 1962 & 7,16\% & n/a & \(n /\) n & 86 & 44 & 42 \\
\hline 1963 & 7,264 & n/a & n/a & 87 & 44 & 43 \\
\hline 1964 & 7,336 & n/a & n/a & 88 & 45 & 43 \\
\hline 1965 & 7,409 & n/a & n/a & 88 & 45 & 43 \\
\hline 1966 & 7,574 & n/a & n/a & 91 & 48 & 43 \\
\hline 1967 & 7,743 & n/a & n/a & 96 & 53 & 43 \\
\hline 1968 & 7,973 & n/a & n/a & 98 & 54 & 44 \\
\hline 1969 & 8,059 & n/a & n/a & 100 & 56 & 44 \\
\hline 1970 & 8,367 & n/a & n/a & 102 & 58 & 44 \\
\hline \(i>71\) & 9,005 & 4,891 & 4,114 & 107 & 62 & 45 \\
\hline 1972 & 9,55' & 5,295 & 4,263 & 110 & 64 & 46 \\
\hline 1973 & 10,396 & 5,884 & 4,512 & 113 & 66 & 47 \\
\hline 1974 & 11,365 & 6,441 & 4,924 & 113 & 66 & 47 \\
\hline 1975 & 12,716 & 7,175 & 5,541 & 113 & 66 & 47 \\
\hline 1976 & 13,634 & 7,534 & 6,100 & 115 & 68 & 47 \\
\hline 1977 & 13,614 & 7,698 & 5,916 & 119 & 72 & 47 \\
\hline 1978 & 14,391 & 8,284 & 6,107 & 123 & 74 & 49 \\
\hline 1979 & 14,966 & 8,852 & 6,114 & 125 & 74 & 51 \\
\hline 1980 & 15,135 & 8,840 & 6,295 & 126 & 75 & 51 \\
\hline 1981 & 15,673 & 9,243 & 6,430 & 126 & 75 & 51 \\
\hline 1982 & 15,985 & 9,545 & 6,440 & 127 & 75 & 52 \\
\hline 1983 & 15,801 & 9,411 & 6,390 & 127 & 75 & 52 \\
\hline 1984 & 16,369 & 9,792 & 6,57i & 127 & 75 & 52 \\
\hline
\end{tabular}
a/Figures for 1961-1970 were obtained from the American Medical Association (1960-84). Figures for 1971-84 were obtained from the Association of American Medical Colleges (1972-85, special tabulations of \(10 / 21 / 82,6 / 15 / 83,7 / 10 / 84\), and \(2 / 5 / 85\) ). The 1983 figure for private schools includes an estimate from Columbia University.
b/From the Association of American Medical Colleges (1972-85, special tabulations of \(10 / 27 / 82,6 / 15 / 83,7 / 10 / 84\), and \(2 / 5 / 85\) ).

APPENDIX TABLE A5 Full-T ine Eudgeted Vacancies on U.S. Hedical Schocl Faculties, by Control of Institution, 1961-84a/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{3}{|l|}{All Departments} & \multicolumn{3}{|l|}{Basic Science Departments} & \multicolumn{3}{|l|}{Clinical Science Departments} \\
\hline & Total & Public & Private & Intal & Public & Private & Total & Public & Private \\
\hline 1961 & 784 & n/a & n/a & 305 & \(n / 3\) & n/a & 515 & n/d & n/a \\
\hline 1962 & 836 & n/a & n/a & 348 & n/d & \(n / \mathrm{d}\) & 488 & n/d & n/a \\
\hline 1963 & 826 & n/a & n/a & 350 & n/d & \(\mathrm{n} / \mathrm{d}\) & 476 & n/a & n/d \\
\hline 1964 & 915 & n/a & n/a & 401 & n/d & \(n / \mathrm{a}\) & 514 & n/d & \(n / 2\) \\
\hline 1965 & 955 & n/a & n/a & 376 & \(n / 2\) & \(n / \mathrm{d}\) & 579 & n/d & n/a \\
\hline 1966 & 1,115 & n/a & n/a & 443 & n/d & n/d & 672 & n/d & n/a \\
\hline 1967 & 1,374 & n/a & n/a & 520 & \(\pi / \mathrm{d}\) & \(n / 2\) & 859 & \(n / d\) & n/a \\
\hline 1968 & 1,585 & n/a & n/a & 570 & \(n / 2\) & \(\pi / 2\) & 1,015 & \(n / d\) & \(n / 2\) \\
\hline 1969 & 1,691 & n/a & n/a & 579 & n/8 & \(n / \mathrm{d}\) & 1,112 & n/d & n/a \\
\hline 1970 & 1,634 & n/d & n/a & 541 & n/d & n/a & 1,093 & n/a & \(n / 2\) \\
\hline 1971 & 1,522 & 856 & 666 & 518 & 295 & 222 & 1,004 & 560 & 444 \\
\hline 1972 & 1,757 & 1,111 & 646 & 511 & 328 & 183 & 1,206 & 783 & 463 \\
\hline 1973 & 1,857 & 1,144 & 713 & 550 & 361 & 189 & 1,307 & 783 & 524 \\
\hline 1974 & 2,079 & 1,339 & 740 & 601 & 388 & 213 & 1,478 & 951 & 527 \\
\hline 1975 & 2,250 & 1,505 & 745 & 618 & 415 & ? 23 & 1,632 & 1,090 & 542 \\
\hline 1976 & 2,446 & 1,588 & 858 & 664 & 467 & 197 & 1,782 & 1,121 & 661 \\
\hline 1977 & 2,503 & 1,599 & 904 & 638 & 416 & 2? & 1,865 & 1,183 & 682 \\
\hline 1978 & 2,697 & 1,782 & 915 & 697 & 484 & 213 & 2,000 & 1,298 & 702 \\
\hline 1979 & 2,821 & 1,811 & 1,010 & 121 & 467 & 254 & 2,100 & 1,394 & 756 \\
\hline 1980 & 3,055 & 1,971 & 1,084 & 776 & 489 & \(28 i\) & 2,279 & 1,482 & 797 \\
\hline 1981 & 2,887 & 1,978 & 909 & 656 & 425 & 231 & 2,231 & 1,553 & 678 \\
\hline 1982 & 2,932 & 1,931 & 1,001 & 668 & 432 & 236 & 2,264 & 1,499 & 765 \\
\hline 1983 & 2,941 & 1,857 & 1,084 & 671 & 419 & 252 & 2,270 & 1,438 & 832 \\
\hline 1984 & 3,107 & 1,890 & 1,217 & 705 & 443 & 262 & 2,402 & 1,447 & 955 \\
\hline
\end{tabular}

2/Figures for 1961-70 were obtained from the American Medical Association (1960-84). Figures for 1971-84 were obtained from the Association of American Medical Colloge; : \(1972-85\), special tabulations of 10/21/82, \(6 / 15 / 83\), \(7 / 10 / 84\), and 2/5/85).

APPENDIX TABLE A6 Primary Activit: of Physiclans in the \(1.5,1963-83\) a/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Total Active \({ }^{\text {b/ }}\)} & \multicolumn{2}{|l|}{Patient Care} & \multicolumn{2}{|l|}{Teaching} & \multicolumn{2}{|l|}{Admin.} & \multicolumn{2}{|l|}{Research} & \multicolumn{2}{|l|}{,.101} & \multicolumn{2}{|l|}{Unclassified and Unknown Addrass} \\
\hline Yerr & N & \(\%\) & N & \(\%\) & H & \(\checkmark\) & N & \% & \(N\) & \% & N & \% & 1 & \(\%\) \\
\hline 1963 & 263,063 & 100.0 & 246,951 & 93.9 & 8,190 & 3.1 & 3,332 & 1.3 & 3,255 & 1.2 & 11/d & - & 1,335 & 0.5 \\
\hline 1964 & 270,885 & 100.0 & 253,543 & 29,6 & 8,869 & 3.3 & 3,512 & 1.3 & 3,627 & 1.3 & n/d & & 1,333 & 0.5 \\
\hline 1965 & 278,809 & 100.0 & 259,418 & 93,0 & 9,794 & 3.5 & 4,157 & 1.5 & 4,306 & 1.5 & n/d & . & 1,234 & 0.4 \\
\hline 1966 & 287,163 & 100.0 & 266,766 & 92.9 & 10,403 & 3.7 & 4,143 & 1.4 & 4,445 & 1.5 & n/d & - & 1,306 & 0.5 \\
\hline 1967 & 295,732 & 100.0 & 274, 190 & 92.7 & 11,166 & 3.8 & 4,121 & 1.4 & 4,595 & 1.6 & \(\mathrm{n} / \mathrm{d}\) & & 1,660 & 0.6 \\
\hline 1968 ¢ & 298,401 & 100.0 & 261,722 & 87.7 & 3,051 & 1.7 & 11,215 & 3.9 & 15,441 \({ }^{\text {d }}\) & 5.2 & 2,383 & 0.8 & 2,089 & 0.7 \\
\hline 1969 & 305,047 & 100.0 & 270,737 & 88.8 & 5,149 & 1.7 & 12,107 & 4.0 & 12,375 & 4.1 & 2,598 & 0.9 & 5,865 & 1.9 \\
\hline 1970 & 314,407 & 100.0 & 278,535 & 88.6 & 5,588 & 1.8 & 12,158 & 3.9 & 11,929 & 3.8 & 2,635 & 0.8 & 3,562 & 1.1 \\
\hline 1971 & 325,435 & 100.0 & 287,248 & 88.3 & 5,844 & 1.8 & 12,076 & 3.7 & 10,898 & 3.3 & 2,633 & 0.8 & 6,736 & 2.1 \\
\hline 1972 & 336,424 & 100.0 & 292,210 & 86.9 & 5,836 & 1.7 & 11,074 & 3.3 & 9,290 & 2.8 & 2,693 & 0.8 & 15,521 & 4.6 \\
\hline 1973 & 343,755 & 100.0 & 295,257 & 85.9 & 6,183 & 1.8 & 11,959 & 3.5 & 8,332 & 2.4 & 2,636 & 0.8 & 19,388 & 5.6 \\
\hline 1974 & 358,134 & 100.0 & 301,238 & 84.1 & 6,464 & 1.8 & 11,739 & 3.3 & 8,159 & 2.2 & 2,666 & 0.7 & 27,868 & 7.8 \\
\hline 1975 & 372,293 & 100.0 & 311,937 & 83,8 & 6,445 & 1.7 & 11,161 & 3.0 & 7,944 & 2.1 & 2,793 & 0.8 & 32,013 & 8.6 \\
\hline 1976 & 387,329 & 100.0 & 318,412 & 82.2 & 6,935 & 1.8 & 11,689 & 3.0 & 8,514 & 2.2 & 2,893 & 0.7 & 38,886 & 10.0 \\
\hline 1977 & 392,913 & 100.0 & 332,393 & 84.6 & 6,673 & 1.7 & 11,954 & 3.0 & 9,786 & 2.5 & 2,813 & 0.7 & 29,296 & 7.5 \\
\hline 1978 & 410,655 & 100.0 & 342,714 & 83.6 & 7,025 & 1.7 & 11,858 & 2.9 & 11,437 & 2.8 & 2,771 & 0.7 & 34,844 & 8.5 \\
\hline 1979 & 426, 226 & 100.0 & 356,783 & 83.7 & 7,523 & 1.8 & 12,118 & 2.8 & 14,515 & 3.4 & 2,790 & 0.7 & 32,497 & 7.6 \\
\hline 1980 & 441,935 & 100.0 & 376,512 & 85.2 & 7,992 & 1.8 & 12,209 & 2.8 & 15,377 & 3.5 & 2,876 & 0.7 & 27,019 & 6.1 \\
\hline 1981 & 450, 112 & 100.0 & 389,369 & 86.5 & 7,202 & 1.6 & 13,250 & 2.9 & 17,901 & 4.0 & 3,023 & 0.7 & 19,367 & 4.3 \\
\hline 1982 & 466,268 & 100.0 & 408,663 & 87.6 & 7,505 & 1.6 & 13,408 & 29 & 16,743 & 3.6 & 3,070 & 0.7 & 16,879 & 3.6 \\
\hline 1983 & 482,635 & 100.0 & 423,361 & 87.7 & 7,783 & 1.6 & 13,828 & 2.9 & 18,535 & 3.8 & 3,290 & 0.7 & 15,838 & 3.3 \\
\hline
\end{tabular}
d/From the American Medical Association (1963-85).
b/Excludes temporary foreign includes unknown address and unclassified.
6/In 1968 the AMA revised il. racedures for classifying physicians, flaking comparisons with early years extremely difficult. One effect was to drastically reduce the Teaching catego's and to increase the Administration and Research categories.
d/Includes 8,029 fellows formerly included in the Patient Care category.

APPENDIX TABLE AT R and D Expenditures in U.S. Medical Schools, by Control of Institution, 1962 -89 ( 6 thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Fiscal } \\
& \text { Year }
\end{aligned}
\]} & \multicolumn{6}{|l|}{Total R and D Expenditures} & \multirow[b]{3}{*}{Implicit gup Price Def latord/ (1972: 100.00)} & \multirow[b]{3}{*}{\begin{tabular}{l}
NJH Clinical \\
Research as d \\
\% of Total \\
Research Obligations \(\subseteq\)
\end{tabular}} & \multicolumn{3}{|l|}{Estimuted Clinical R and Of/} \\
\hline & \multicolumn{3}{|l|}{Current Dollars \({ }^{\text {a }}\)} & \multicolumn{3}{|l|}{1972 Dollars} & & & 197 \({ }^{\circ}\) & & \\
\hline & Total & Pubiic & Private & Iotal & Public & Private & & & Iotal & Putilic & Private \\
\hline 1362 & 208,573 & 85,491 & 123,082 & 295,848 & 121,264 & 174,584 & 70.50 & 12.0 & 35,502 & 14,552 & 20,950 \\
\hline 1963 & 264,418 & 106,000 & 153,400 & 369,299 & 148,045 & 221,229 & 71.60 & 13.5 & 19,855 & 19,986 & 29,865 \\
\hline 1964 & 310,412 & 128,710 & 181,702 & 426,971 & 171,043 & 249,934 & 72.70 & 15.0 & 61,097 & 26,556 & 31,190 \\
\hline 1965 & 344, 787 & 143,627 & 201,160 & 464,047 & 193,307 & 270,740 & 74.30 & 16.5 & 16,568 & 31,896 & 11,672 \\
\hline 1966 & 311,027 & 155,960 & 221,068 & 490,921 & 203,073 & 287,819 & 76.80 & 18.0 & 88,366 & 36,553 & 51,813 \\
\hline 1967 & 422,467 & 178,881 & 243,586 & 534,768 & 226,432 & 308,331 & 79.00 & 20.0 & 105,954 & 45,286 & 61,607 \\
\hline 1968 & 470,958 & 202,440 & 268,518 & 570,167 & 205,085 & 325,082 & 82.50 & 22.5 & 128,288 & 55,141 & 73, 143 \\
\hline 1969 & 489, \({ }^{\text {' }} 4\) & 196,800 & 292,500 & 564,376 & 226,990 & 331,370 & 86.70 & 25.0 & 141,094 & 56,748 & 84, 343 \\
\hline 1970 & 498,005 & 205,962 & 292,104 & 544,930 & 225,341 & 319,589 & 91.40 & 28.0 & 152,580 & 63,095 & 89,485 \\
\hline 1971 & 499,841 & 207,346 & 292,495 & 520,668 & 215,985 & 304,682 & 96.00 & 30.0 & 156,200 & 9,4,796 & 91,405 \\
\hline 1972 & 558,120 & 227,638 & 330,482 & 558,120 & 227,638 & 330,482 & 100.00 & 32.0 & 178,598 & 12,804 & 105,754 \\
\hline 1973 & 605,921 & 264,808 & 342,113 & 573,649 & 250,291 & 323,358 & 105.80 & 34.0 & 195,041 & 85,099 & 109,942 \\
\hline 1974 & 651,287 & 300,479 & 356,808 & 566,627 & 259,034 & 307,593 & 116.00 & 34.0 & 192,65.3 & 88,072 & 109,582 \\
\hline 1975 & 784,537 & 363,893 & 420,644 & 616,774 & 286,079 & 330,695 & 127.20 & 39.0 & 240,542 & 111,571 & 128,971 \\
\hline 1976 & 839,170 & 385,857 & 453,313 & 626,714 & 288, 168 & 338,546 & 133.90 & 37.0 & 231,884 & 106,622 & 125,262 \\
\hline 1971 & 913,827 & 449,709 & 524,118 & 687,246 & 317,361 & 369,879 & 141.70 & 39.0 & 268,026 & 123,173 & 144,253 \\
\hline 1978 & 1,046,121 & 490,029 & 556,002 & 688,011 & 322,281 & 365, 730 & 152.05 & 41.0 & 282,085 & 132,135 & 149,949 \\
\hline 1979 & 1,190,689 & 585,488 & 605,201 & 719,623 & 353,855 & 365,769 & 165.16 & 38.0 & 213,457 & 134,469 & 138,971 \\
\hline 1980 & 1,352,409 & 677,085 & 675,324 & 157,992 & 379,489 & 378,502 & 178.42 & 39.0 & 295,617 & 148,001 & 147,616 \\
\hline 1981 & 1,471,919 & 765,565 & 711,354 & 757,363 & 392,828 & 364,535 & 195.14 & 38.0 & 287,198 & 149,275 & 138,523 \\
\hline 1982 & 1,605,585 & 828,954 & 176,631 & 176,095 & 400,693 & 375,40? & 206.88 & 38.0 & 294,916 & 152,263 & 142,653 \\
\hline 1983e/ & 1,781,53' & 937,510 & 850,022 & 828,981 & 434,711 & 394,204 & 215.63 & 38.0 & 315,013 & 165,215 & 149,798 \\
\hline 1984 & 1,997,317 & 1,065,607 & 931,110 & 893,934 & 476,931 & 417,003 & 223.43 & 38.0 & 339,695 & 181,239 & 158,161 \\
\hline
\end{tabular}
 Because AAMC data were incomplete, figures for 1963 and 1969 were obtained from the American Medical Asso lit: , (198)-nil. Items may not sum to totals due to rounding.
b/from the U.S. Bureau of the Census.

d/See note to this table on next page.
e/financial data fron the University of Kashington and Mayo Medical Schooi............ for the first time in 1983.

KOTE TO APPEKDIX TARE A7:
ESTIMATIMG CLINICAL RESEARCH EXPENDITURES
An estimate of the amount of support for clinical R and D in U.S. medical schools is needed in order to refine our model of demand for clinital faculty. The best data we can obtain from the AAMC are on total \(R\) and \(D\) expenditures in medical schools. This is the variable used in our demand models. Data on clinical \(R\) and \(D\) expenditures, however, are not ayaliable.

The approach taken to derive an estimate of clinical \(R\) and 0 expenditures in medical schools is to apply a correction factor to total \(R\) and 0 expenditures, A correction factor which seems appropriate is the proportion of lotal WIH obligations that goes to support clinical research. From 1969 to 1984, this proportion has increased by 52 percent as shom below.

Clinical Research as Percent of NiH Obligotions (NIH, 1975; NSF, 1960-84)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1969 & 1970 & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1971 & 1978 & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 \\
\hline 25\% & \(28 \%\) & 30x & 32\% & 34\% & 34\% & 39\% & 37\% & 39\% & 41\% & 388 & 39\% & 38\% & 38\% & 38\% & \(38 \%\) \\
\hline
\end{tabular}

In the .urence of any direct measurements, the above percentages of fer the best svallable means of estimating clinical R\&D expenditures in medical schools, Accordingly, they have been used to produce the data shown in table 2.1.

There 15 , of course, a serious problem of defining clinical research which clouds aity attempt to measure its support, The MiH est inates were derived generally from it: Central Scientific Classification System (CSCS) in which each researcli grant is classified according to its primary field or discipline, If that discipline fails. within a group identified as cilnical science, then the grant is tabulated as such. All program project and center grants are identified as clinical by the NIH.

The classification of any grant is admittedly subjective. Therefore, estimates derived by this process are subject to considerable uncertainty. Other classification schemes th use at WiH mould be likely to produce different estimates of clinical research from those de thed from the CSC: system. But the latter hat: one advantage--they were produced for a series of years under a constant definition. Thus, while the absolute levels may not be very precise, :he change from year to year seems to have somehtat more validity.

APPENDIX TABLE A8 Professional Service Income in U.S. Medical Schools, by Control of Institution, 1962-84 (\$ thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{3}{|l|}{Current Dollars \({ }^{\text {/ }}\)} & \multicolumn{3}{|l|}{1972 Dollars b/} \\
\hline & Total & Public & Private & Total & Public & Private \\
\hline 1962 & 15,500 & 7,453 & 8,047 & 21,986 & 10,572 & 31,414 \\
\hline 1963 & 16,681 & 8,624 & 8,056 & 23,297 & 12,045 & 11,251 \\
\hline 1964 & 18,576 & 9,12.4 & 3,452 & 25,552 & 12,550 & 13,001 \\
\hline 1965 & 21,840 & 11,534 & 10,305 & 29,394 & 15,524 & 13,869 \\
\hline 1966 & 25,203 & 13,369 & 11,834 & 32,816 & 17,408 & 15,409 \\
\hline 1967 & 30,252 & 16,407 & 13,845 & 38,294 & 20,768 & 17,525 \\
\hline 1968 & 47,406 & 28,096 & 19,310 & 57,392 & 34,015 & 23,378 \\
\hline 1969 & 65,304 & 37,600 & 27,700 & 75,322 & 43,368 & 31,949 \\
\hline 1970 & 90,057 & 52,232 & 37,825 & 98,531 & 57,147 & 41,384 \\
\hline \(197 i\) & 115,883 & 68,379 & 47,504 & 120,711 & 71,228 & 49,483 \\
\hline 1972 & 138,197 & 75,466 & 62,731 & 138,197 & 75,466 & 62,731 \\
\hline 1973 & 158,984 & 87,763 & 71,221 & 150,268 & 82,952 & 67,317 \\
\hline 1974 & 201,642 & 121,842 & 79,800 & 173,829 & 105,036 & 68,793 \\
\hline 1975 & 305,331 & 168,798 & 136,533 & 240,040 & 132,703 & 107,337 \\
\hline 1976 & 409,877 & 218,905 & 190,972 & 306, 107 & 163,484 & 142,623 \\
\hline 1977 & 553,664 & 263,965 & 289,699 & 390,730 & 186,285 & 204,445 \\
\hline 1978 & 616,971 & 296,219 & 320,752 & 405,768 & 194,817 & 210,952 \\
\hline 1979 & 729,439 & 361,104 & 368, 335 & 440,855 & 218,242 & 222,613 \\
\hline 1980 & 880,335 & 436,567 & 443,768 & 493,406 & 244,685 & 248,721 \\
\hline 1981 & 1,026,296 & 5,00,402 & 525,894 & 525,928 & 256,432 & 269,496 \\
\hline 1982 & 1,265,146 & 597,484 & 657,662 & 611,536 & 288,807 & 322,729 \\
\hline 19836i & 1,595,165 & 771,330 & 823,835 & 739,770 & 357,710 & 382,060 \\
\hline 1984 & 1,800,954 & 868,772 & 932,182 & 806,048 & 388,834 & 417,214 \\
\hline
\end{tabular}
a/This is income under control of school. An unknown amount is not under ....trol of school and is not reported here. Figures were obtained from the ciation of American Medical Colleges (1972-85, special cabulations generated arintilly from 1982-85). Because AAMC data were incomplete, figures for 1969 wire obtained from the American Medical Association (1960-84). Items may not. sim te totals due to rounding.
b/1972 © © (U.S. Bureau of the Census--see Appendix Table A7).
c/Financial data from the University of Washington and Mayo Medical School were included for the first time in 1983.

APPENOIX TABLE A9 Average Cititical R and D Expenditures and Professional Service Incone per U.S. Medical Schnol, by Control of Institution, \(1962-84^{2 / 2}\) ( 1972 S , thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Fiscal } \\
& \text { Year } \\
& \hline
\end{aligned}
\]} & \multicolumn{6}{|l|}{Clinical R and 0 Expenditures} & \multicolumn{6}{|l|}{Professional Service Incone} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sum of Average Clinical R 6 D Professional Ser. vice Incone per School}} \\
\hline & \multicolumn{3}{|l|}{Average per School} & \multicolumn{6}{|l|}{Mumber of Schools Reporting 6 Average per School} & \multicolumn{3}{|l|}{Number of Schools Report ing} & & & \\
\hline & Total & Public & Private & Total & Public & Private & Totd & Public & Private & [otal & Public & Private & Iotal & Public & Private \\
\hline 1962 & 413 & 331 & 499 & 86 & 44 & 42 & 733 & 581 & 951 & 30 & 18 & 12 & 1,145 & 918 & 1,450 \\
\hline 1963 & 573 & 444 & ill & 87 & 45 & 42 & 152 & 659 & 863 & 31 & 18 & 13 & 1,325 & 1,113 & 1,574 \\
\hline 1964 & 745 & 604 & 893 & 86 & 44 & 42 & 824 & 738 & 929 & 31 & 17 & 14 & 1,569 & 1,342 & 1,822 \\
\hline 1965 & 880 & 709 & 1,064 & 87 & 45 & 42 & 891 & 817 & 991 & 33 & 19 & 14 & 1,711 & 1, 1,26 & ?,055 \\
\hline 1966 & 993 & 778 & 1,234 & 89 & 47 & 42 & 994 & 967 & 1,027 & 33 & 18 & 1. & 1,987 & 1,745 & 2,261 \\
\hline 1967 & 1,114 & 854 & 1,434 & 96 & 53 & 43 & 891 & 865 & 922 & 43 & 24 & 19 & 2,005 & 1,179 & 2,356 \\
\hline 1968 & 1,323 & 1,003 & 1,742 & 91 & 55 & 42 & 1,025 & 1,031 & 1,016 & 56 & 33 & 23 & 2,348 & 2,039 & 2,158 \\
\hline 1969 & 1,550 & 1,091 & 2,163 & 91 & 52 & 39 & 1,321 & 1,314 & 1,331 & 57 & 33 & 24 & 2,811 & 2,405 & 3, 194 \\
\hline 1970 & 1,526 & 1,088 & 2,130 & 100 & 58 & 42 & 1,388 & 1,361 & 1,427 & 7 & 42 & 29 & 2,914 & 2,449 & 3,557 \\
\hline 1971 & 1,531 & 1,080 & 2,176 & 102 & 60 & 42 & 1,224 & 1,656 & 1,833 & 70 & 43 & 27 & 3,255 & 2,136 & 4,009 \\
\hline 1972 & 1,734 & 1,235 & 2,04 & 103 & 59 & 44 & 1,946 & 1,841 & 2,091 & \(n\) & 41 & 30 & 3,680 & 3,016 & 4,495 \\
\hline 1973 & 1,894 & 1.418 & 2,557 & 103 & 60 & 43 & 2,147 & 2,127 & 2,172 & 10 & 39 & 31 & 4,041 & 3,545 & 4,729 \\
\hline 1974 & 1,736 & 1,334 & 2,324 & 111 & 66 & 45 & 2,381 & 2,283 & 2,548 & 13 & 46 & 27 & 4,117 & 3,617 & 4,872 \\
\hline 1975 & 2,167 & 1,665 & 2,931 & III & 67 & 44 & 3,017 & 2, 165 & 3,578 & 78 & 48 & 30 & 5,244 & 4,430 & 6,509 \\
\hline 1976 & 2,070 & 1,591 & 2,784 & 112 & 67 & 45 & 3,644 & 3,270 & 4,195 & 84 & 50 & 34 & 5,714 & 4,861 & \\
\hline 1977 & 2,311 & 1,768 & 3,136 & 1 if & 70 & 46 & 4,390 & 3,450 & 5,841 & 89 & 54 & 35 & 6,101 & 5,218 & 8,971 \\
\hline 1978 & 2,351 & 1,835 & 3,124 & 120 & 12 & 48 & 4,363 & 3,479 & 5,701 & 93 & 56 & 31 & 6,714 & 5,314 & 8,825 \\
\hline 1979
1980 & 2,260 & 1,882 & 2,896 & 121 & 13 & 48 & 4,740 & 3,829 & 6,184 & 93 & 57 & 36 & 1,000 & 5,671 & \\
\hline 1980 & 2,443 & 2,000 & 3,141 & 121 & 74 & 4 & 5,140 & 4,078 & 6,909 & 96 & 60 & 36 & 7,58) & 6,078 & 10,050 \\
\hline 1981 & 2,398 & 2,045 & 2,947 & 120 & 13 & & 5,259 & 4,136 & 1,092 & 100 & 62 & 38 & 1,657 & 6,18i & \\
\hline 1982 & 2,398 & 2,058 & 2,911 & 123 & 74 & 49 & 5,99\% & 4,658 & 8,068 & 102 & 62 & 40 & 8,393 & 6,181
6,116 & 10,979 \\
\hline 1963C/ & 2,561 & 2,233 & 3,057 & 123 & 74 & 49 & 6,914 & 5,420 & 9,319 & 107 & 66 & 41 & 9,475 & 1,653 & 12,316 \\
\hline 1984 & 2,739 & 2,449 & 3,169 & 124 & 74 & 50 & 1,533 & 5,891 & 10,176 & 107 & 66 & 41 & 10,272 & 8,340 & 13, 345 \\
\hline
\end{tabular}
d/See Appendix Tables A7 and AB for supporting data.
b/From the Association of Anerican Kedical Colleges (1972-85, special trbulations generated annually from 1982-85). Figures for 1969 were estimated by
the comilttee.
S/Financial data from the Univeraity of Mashington and Hayo Medical School were included for the first time in 1903.

APPEMOIX TABELE AIO Clinical R and \(D\) Expenditures + Professional Service Income in U.S. Medical Schools, by Control of Institution, 1962-88d
(1972 S, thoussands) (1972 S, thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \begin{array}{l}
\text { Fiscal } \\
\text { Year }
\end{array} \\
& \hline
\end{aligned}
\]} & \multicolumn{6}{|l|}{Sum of CInicel R and \(D\) Expenditures + ProfessIonal Service Income} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{l}
Meighted. Sun of CI Inical R and D \\
+ Proless ional Service Income \\
in Last 3 Years S
\end{tabular}}} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Heighted Sum of Avergege CI inied \(R\) and \(D+\) Professlonal Service Income ner School in Last 3 Years b}} \\
\hline & \multicolumn{3}{|l|}{Current Dollars} & \multicolumn{3}{|l|}{1972 Dollars} & & & & & & \\
\hline & Total & Public & Private & Total & Public & Privete & Total & Public & Private & Total & Public & Private \\
\hline 1962 & 40,529 & 17,112 & 22,817 & 57,488 & 25,123 & 32,364, & & & & & & \\
\hline 1963 & 52,317 & 22,934 & 29,440 & 73,153 & 32,031 & 41, 117 & & & & & & \\
\hline 1964 & 65, 138 & 28,430 & 36,707 & 89,598 & 39, 107 & 50,491 & 73,348 & 32,073 & 41,273 & 1,341 & 1,122 & 1,606 \\
\hline 1965 & 18,730 & 35,232 & 43,496 & 105,962 & 47,419 & 58,542 & 89,578 & 39,416 & 50,160 & 1,558 & 1,331 & 1,818 \\
\hline 1966 & 93,068 & 41,442 & 51,626 & 121,182 & 53,961 & 67,222 & 105,676 & 46,976 & 58,699 & 1,774 & 1,535 & 2,048 \\
\hline 1967 & 114,745 & 52, 183 & 62,562 & 145,247 & 66,055 & 79,193 & 123,393 & 55,349 & 68,044 & 1,938 & 1,684 & 2,233 \\
\hline 1968 & 159,372 & 73,645 & 79,727 & 185,680 & 89, 159 & 96,521 & 199,339 & 68,807 & 80,532 & 2,086 & 1,804 & 2,433 \\
\hline 1969 & 187,633 & 86,800 & 100,825 & 216,416 & 100, 1175 & 16,292 & 183,256 & 86, 122 & 97,132 & 2,393 & 2,048 & 2,842 \\
\hline 1970 & 229,515 & 109,901 & 119,614 & 251,111 & 120,242 & 130,869 & 217,406 & 102,408 & 114,993 & 2,751 & 2,323 & 3,326 \\
\hline 1971 & 265,835 & 130,583 & 135,252 & 276,912 & 136,024 & 140,888 & 248,887 & 119,156 & 129,729 & 2,989 & 2,510 & \\
\hline 1972 & 316,795 & 148,310 & 168,485 & 316,795 & 148,310 & 168,485 & 280,432 & 135,150 & 145,282 & 3,216 & 2,749 & 4,018 \\
\hline 1973 & 365,337 & 171,998 & 187,539 & 345,309 & 168,051 & 177,258 & 313,953 & 150,174 & 163,779 & 3,664 & 3,108 & 4,432 \\
\hline 1974 & 425, 120 & 224,005 & 201,115 & 366,482 & 193, 100 & 173,375 & 343,474 & 169,380 & 174,094 & 3,969 & 3,446 & 4,706 \\
\hline 1975 & 611,300 & 310,716 & 300,58 & 480,582 & 244,274 & \(2.63,308\) & 389,714 & 199,635 & 190,079 & 4, 1,80 & 3,803 & 5,245 \\
\hline 1976 & 720,370 & 361,672 & 358,698 & 537,991 & 270,106 & 267,885 & 466,409 & 237,940 & 228,469 & 5,080 & 4,335 & 6,211 \\
\hline 1977 & 933,457 & 439,352 & 494,105 & 658,756 & 310,058 & 348,698 & 553,830 & 273,636 & 280,194 & 5,849 & 4,842 & 7,361 \\
\hline 1978 & 1,045,881 & 497, 131 & 548,750 & 687,853 & 326,952 & 360,901 & 635,839 & 304,293 & 331,545 & 6,457 & 5,153 & 8,440 \\
\hline & 1,181,900 & 583,589 & 598,311 & 114,312 & 352,707 & 361,605 & 687,193 & 324, 167 & 356,026 & 6,782 & 5,379 & 8,440
8,927 \\
\hline 19801 & 1,407,774 & 700,630 & 707,144 & 789,023 & 392,686 & 396,337 & 726,375 & 356,263 & 370,112 & 1,074 & 5,684 & 9,258 \\
\hline 1981 & 1,587,904 & 991,698 & 796,208 & 813,726 & 405,707 & 408,019 & 776,521 & 385,947 & 390,574 & 1,456 & 6,002 & 9,805 \\
\hline \(1982 \mathrm{c} /\) & 1,815,269 & 912,487 & 962,781 & 906,452 & 441,070 & 465,382 & 830,732 & 411,293 & 419,439 & 1,823 & 6,289 & 10,271 \\
\hline 19832? & 2,274,429 & 1,127,583 & 1,146,845 & 1,054,783 & 522,925 & 531,858 & 920,353 & 457.693 & 467,660 & 8,480 & 6,817 & \(1{ }^{1}\) \\
\hline 1984 ? & 2,559,934 & 1,273,703 & 1,286,231 & 1,145,743 & 50,068 & 575,675 & 1,040,440 & 514,247 & 526,193 & 9,404 & i,591 & : 239 \\
\hline
\end{tabular}
a/see Appendix Tables A7, AB, and A9 for supporting data.
b/computad by the formula \(D_{1}=1 / 4\left(S_{1}+2 s_{j-1}+S_{1-2}\right)\), where \(O_{1}=\) a weighted averoge; \(S_{i}=\) sum of clinical \(R\) and \(D\) expenditures + professional service incone in medical schools in year 1 .

C/Financial data fron the University of Mashington and Mayo Hedical School were included for the first time in 1983.

APPENMI TABLE All. 1 Sources of Revenue in U.S, Medical Schools, 1959-830/ (current \(\$\), millions)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Yedr} & \multicolumn{3}{|l|}{Total Revenue} & \multirow[b]{2}{*}{Federal Research} & \multirow[b]{2}{*}{\begin{tabular}{l}
Other \\
Federal
\end{tabular}} & \multirow[b]{2}{*}{State/ Locel Govt.} & \multirow[b]{2}{*}{Tultion Revenye} & \multirow[b]{2}{*}{Prol. Service Income} & \multirow[b]{2}{*}{Other Revenue} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Hunber oi } \\
& \begin{array}{l}
\text { All } \\
\text { Schools }
\end{array} \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{ools Reporting} \\
\hline & All Schools & Public Schools & Private Schools & & & & & & & & \begin{tabular}{l}
Public \\
School
\end{tabular} & Trivate :hools \\
\hline 1959 & 319 & & & & & & 24 & & & & & \\
\hline 1960 & 371 & & & & & & 26 & 11 & & 87 & & \\
\hline 1961 & 133 & 191 & 242 & & & & 28 & & & 87 & 14 & 43 \\
\hline 1962 & 515 & 239 & 276 & & & & 30 & & & 81 & 44 & 43 \\
\hline 1963 & 603 & 279 & 324 & & & & 32 & & & 87 & 44 & 43 \\
\hline 1964 & 696 & 323 & 312 & & & & 35 & & & 87 & 44 & 43 \\
\hline 1965 & 79 & 363 & 416 & & & & 39 & & & 87 & 44 & 43 \\
\hline 1966 & 882 & 409 & 473 & & & & 41 & & & 88 & 44 & 44 \\
\hline 1967 & 1,010 & 483 & 527 & & & & 44 & & & 88 & 44 & 44 \\
\hline 1968 & 1,175 & 549 & 627 & & & & 48 & & & 89 & 45 & 44 \\
\hline 1969 & 1,366 & 635 & 731 & & & & 52 & & & 92 & 47 & 45 \\
\hline 1970 & 1,550 & 702 & 848 & & & & 56 & & & 93 & 48 & 45 \\
\hline 1971 & 1,113 & 815 & 898 & 438 & 322 & 323 & 63 & 209 & 358 & 92 & 48 & 44 \\
\hline 1972 & 1,995 & 916 & 1,030 & & & & 78 & & & 95 & 51 & 44 \\
\hline 1973 & 2,181 & 1,070 & 1,111 & & & & 92 & & & 96 & 53 & 43 \\
\hline 1974 & 2,524 & 1,321 & 1,204 & & & & 112 & & & 107 & 62 & 45 \\
\hline 1975 & 3,046 & 1,634 & 1,412 & & & & 130 & & & 108 & 63 & 45 \\
\hline 1976 & 3,369 & 1,819 & 1,570 & 823 & 398 & 808 & 156 & 609 & 595 & 11 & 65 & 46 \\
\hline 197 & 3,940 & 2,078 & 1,862 & & & & 194 & & & 112 & 65 & 47 \\
\hline 1978 & 4,316 & 2,338 & 1,978 & & & & 231 & & & 112 & 66 & 46 \\
\hline 1979 & 4,906 & 2,105 & 2,201 & & & & 265 & & & 112 & 66 & 46 \\
\hline 1980 & 5,701 & 3,178 & 2,523 & & & & 308 & & & 119 & 73 & 46 \\
\hline 1981 & 6,425 & 3,628 & 2,991 & 1,446 & 396 & 1,45? & 346 & 1,850 & 935 & 19 & 13 & 46 \\
\hline 1982 & 1,216 & 3,995 & 3,221 & 1,578 & 415 & 1,617 & 413 & 2,140 & 1,054 & 121 & 14 & 47 \\
\hline 1983]/ & 8,179 & 4,531 & 3,647 & 1,655 & 415 & 1,784 & 482 & 2,626 & 1,216 & 124 & 75 & 49 \\
\hline
\end{tabular}
a/From the Anerican Medical Association ( \(1960-89\) ). Numbers may not sum to totals due to rounding.
b/Financial data from the University of Hashington and Mayo Medical school were included for the first time in 1983. These tro schools account for three percent of all revenve in U.S. medical schools.

APPEHOIX TABLE All,2 Sources of Revernve in U.S. Medical Schools, 1959-83!! (1972 \&, millions)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Fiscal } \\
& \text { Year } \\
& \hline
\end{aligned}
\]} & \multicolumn{3}{|l|}{Total Reverue} & \multirow[b]{2}{*}{\begin{tabular}{l}
Federal \\
Research
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Other } \\
& \text { Federal }
\end{aligned}
\]} & \multirow[b]{2}{*}{State/ Local Govt.} & \multirow[b]{2}{*}{Tultion Revenue} & \multirow[b]{2}{*}{Prof, Service Income} & \multirow[b]{2}{*}{\begin{tabular}{l}
Other \\
Revenve
\end{tabular}} & \multicolumn{3}{|l|}{Munber of Schools Reporting} & \multirow[b]{2}{*}{Implicit GNP Price Deflator bl (1972-100.00)} \\
\hline & All Schools & \begin{tabular}{l}
Public \\
Schools
\end{tabular} & Private Schools & & & & & & & All Schools & Public Schools & Private Schools & \\
\hline 1959 & 473 & & & & & & & & & & & & \\
\hline 1950 & 540 & & & & & & 38 & 16 & & 81 & & & \[
\begin{aligned}
& 61.50 \\
& 68.70
\end{aligned}
\] \\
\hline 1951 & 625 & 276 & 349 & & & & 40 & & & & & & \\
\hline 1962 & 130 & 339 & 391 & & & & 43 & & & 87 & id & 43 & 69,30 \\
\hline 1963 & 842 & 390 & 453 & & & & d & & & 87 & , 4 & 4 & 70.50 \\
\hline 1964 & 957 & 444 & 512 & & & & 48 & & & 87 & 44 & 43 & 71,60
720 \\
\hline 1965 & 1,048 & 489 & 560 & & & & 52 & & & 81 & 44 & 43 & 14.30 \\
\hline 1966 & 1,148 & 533 & 616 & & & & & & & & & & \\
\hline 1967 & 1,278 & 611 & 667 & & & & 56 & & & 888 & 44 & 44 & 76,80 \\
\hline 1968 & 1,423 & 665 & 759 & & & & 58 & & & 89 & 4 & 44 & 79,00 \\
\hline 1969 & 1,576 & 132 & 843 & & & & 60 & & & 89
92 & 45
47 & 44
45 & A


40
40
10 \\
\hline 1970 & 1,696 & 768 & 928 & & & & 61 & & & 93 & 47 & 45
45 & 900 \\
\hline 1971 & 1,784 & 849 & 935 & 456 & 335 & 339 & 66 & 218 & 373 & 92 & 4. & 44 & 96,00 \\
\hline 1972 & 1,945 & 916 & 1,030 & & & & 78 & & & 95 & 5 & 44 & 100,00 \\
\hline 1973 & 2,061 & 1,011 & 1,050 & & & & 87 & & & 96 & 53 & 43 & 105.80 \\
\hline 1974 & 2,176 & 1,139 & 1,038 & & & & 97 & & & 107 & 62 & 15 & 116.00 \\
\hline 1975 & 2,395 & 1,285 & 1,110 & & & & 102 & & & 108 & 63 & 45 & 127.20 \\
\hline 1976 & 2,531 & 1,358 & 1,173 & 615 & 297 & 603 & 117 & 455 & 444 & 111 & 65 & & \\
\hline 1977 & 2,881 & 1,465 & 1,314 & & & & 137 & & & 112 & 65 & 47 & 141.70 \\
\hline 1978 & 2,839 & 1,538 & 1,301 & & & & 152 & & & 112 & 66 & 46 & 152.05 \\
\hline 1979 & 2,965 & 1,635 & 1,330 & & & & 160 & & & 112 & 66 & 46 & 165.46
178.42 \\
\hline 1980 & 3,195 & 1,781 & 1,414 & & & & 173 & & & 119 & 73 & 46 & 1788.42 \\
\hline 1981 & 3,293 & 1,859 & 1,433 & 74 & 203 & 744 & 171 & 948 & 479 & 119 & 13 & & \\
\hline 1982 & 3,488 & 1,931 & 1,557 & 763 & 201 & 782 & 200 & 1,034 & 509 & 121 & 14 & 47 & 206,88 \\
\hline 19836 & 3,793 & 2,101 & 1,691 & 758 & 192 & 827 & 224 & 1,218 & 564 & 124 & 75 & 49 & 215.63 \\
\hline
\end{tabular}

8/from the American Medical Association (1960-84). Wunters may not sum to totals due to rounding.
b/fran the U.S. Bureau of Census.
c/f inancitol data froa the University of Washington and Mayo Medical school mere included for the first time in 1983. These two schools account for three parcent of all reverive in U.S. medical schools,

APPENDLK TA8LE AI2 Students in U.S. Dental Schools, by Control of Institution, 1961-880/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Fiscal } \\
& \text { Year } \\
& \hline
\end{aligned}
\]} & \multicolumn{3}{|l|}{Predoctoral Enrol iment} & \multicolumn{3}{|l|}{Graduates} & \multicolumn{3}{|l|}{Advanced Specialty Enroliment \({ }^{\text {b/ }}\)} & \multicolumn{3}{|l|}{Number of Schools} \\
\hline & Total & Public & Private \\
\hline 1961 & 13,580 & 6,135 & 7,445 & 3,253 & 1,564 & 1,689 & n/d & n/d & n/d & 47 & \(n / d\) & n/d \\
\hline 1962 & 13,513 & 6,121 & 7,392 & 3,290 & n/d & n/d & n/d & \(\pi / d\) & n/d & 47 & n/d & n/d \\
\hline 1963 & 13,576 & 6,237 & 7,339 & 3,207 & n/d & n/d & n/d & n/d & n/d & 48 & n/d & n/a \\
\hline 1964 & 13,691 & 6,333 & 7,358 & 3,233 & n/d & n/d & n/d & n/d & n/d & 48 & n/d & n/d \\
\hline 1965 & 13,876 & 6,524 & 1,352 & 3,213 & n/d & n/d & n/d & n/d & n/d & 49 & n/d & n/d \\
\hline 1966 & 14,020 & 6,601 & 1,419 & 3,181 & 1,602 & 1,579 & n/d & n/d & n/d & 49 & n/d & n/d \\
\hline 1967 & 14,421 & 6,452 & 7,969 & 3,198 & n/d & n/d & n/d & n/d & n/d & 49 & n/8 & n/d \\
\hline 1968 & 14,955 & 1,108 & 1,847 & 3,360 & n/d & n/d & 1,374 & 653 & 721 & 50 & 25 & 25 \\
\hline 1969 & 15,408 & 1,425 & 7,983 & 3,457 & n/d & n/d & 1,728 & 833 & 895 & 52 & 28 & 24 \\
\hline 1970 & 16,008 & 1,430 & 8,578 & 3,433 & 1,759 & 1,674 & 1,851 & 859 & 992 & 53 & 20 & 24 \\
\hline 1971 & 16,553 & 8,338 & 8,215 & 3,749 & 1,996 & 1,153 & 1,966 & 990 & 976 & 53 & 29 & 24 \\
\hline 1972 & 17,305 & 8,865 & 8,440 & 3,775 & 1,924 & 1,851 & 2,171 & 1,112 & 1,059 & 52 & 29 & 23 \\
\hline 1973 & 18,376 & 9,445 & 8,931 & 3,961 & 1,992 & 1,969 & 2,045 & 1,951 & 994 & 56 & 32 & 24 \\
\hline 1974 & 19,369 & 10,217 & 9,152 & 4,230 & 2,147 & 2,083 & 2,024 & 1,068 & 956 & 58 & 34 & 24 \\
\hline 1975 & 20,146 & 10,817 & 9,329 & 4,515 & 2,331 & 2,184 & 2,062 & 1,107 & 955 & 58 & 34 & 24 \\
\hline 1976 & 20,767 & 11,413 & 9,354 & 4,969 & 2,463 & 2,506 & 2,022 & 1, III & 911 & 59 & 35 & 24 \\
\hline 1971 & 21,013 & 11,628 & 9,385 & 5,336 & 2,920 & 2,416 & 2,009 & 1,112 & 897 & 59 & 35 & 24 \\
\hline 1978 & 21,510 & 12,004 & 9,506 & 5,177 & 2,796 & 2,381 & 2,054 & 1,146 & 908 & 59 & 35 & 24 \\
\hline 1979 & 22,179 & 12,319 & 9,860 & 5,324 & 2,899 & 2,425 & 2,101 & 1,167 & 934 & 60 & 35 & 25 \\
\hline 1980 & 22,482 & 12,523 & 9,959 & 5,424 & 2,964 & 2,460 & 2,127 & 1,185 & 942 & 60 & 35 & 25 \\
\hline 1981 & 22,842 & 12,709 & 10,133 & 5,256 & 2,874 & 2,382 & 2,169 & 1,207 & 962 & 60 & 35 & 25 \\
\hline 1982 & 22,621 & 13,429 & 9,192 & 5,550 & 3,004 & 2,546 & 2,188 & 1,299 & 889 & 60 & 35 & 25 \\
\hline 1983 & 22,235 & 13,019 & 9,216 & 5,371 & 2,941 & 2,430 & 2,128 & 1,246 & 882 & 60 & 35 & 25 \\
\hline 1984 & 21,428 & 12,299 & 9,129 & 5,274 & 3,207 & 2,549 & 2,159 & 1,239 & 920 & 60 & 35 & 25 \\
\hline
\end{tabular}
a/From the American Dental Association (1969-84).
b/public and private numbers were estimated from the total by using the same percentages as in predoctoral enrol liments.

APPENOIX TABLE Al3 Faculty in U.S. Dental Schools, by Control of Institution, 1969-89a/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|l|}{Full-Time} & \multicolumn{3}{|l|}{Part-Time (Full-time Equivalent) \({ }^{\text {b }}\)} \\
\hline & \multicolumn{3}{|l|}{All Schools} & \multicolumn{3}{|l|}{Public Schools} & \multicolumn{3}{|l|}{Private Schools} & \multicolumn{3}{|l|}{Clinical Departments} \\
\hline Fiscal Year & Total & \begin{tabular}{l}
Basic Sci. \\
Depts.
\end{tabular} & \[
\begin{aligned}
& \text { Clin. } \\
& \text { Depts. }
\end{aligned}
\] & Total & Basic Sc Depts. & \[
\begin{aligned}
& \text { Clin. } \\
& \text { Depts. }
\end{aligned}
\] & Total & Basic Sci Depts. & Clin, Depts. & All Schools & Public Schools & Private Schools \\
\hline 1969 & 2,810 & 1,167 & 1,643 & 1,611 & 650 & 961 & 1,199 & 517 & 682 & 926.8 & 335,6 & 591.2 \\
\hline 1970 & 3,329 & 1,389 & 1,940 & 1,982 & 821 & 1,161 & 1,347 & 568 & 779 & 1,060.2 & 422.2 & 638.0 \\
\hline 1971 & 3,197 & 1,096 & 2,101 & 1,927 & 647 & 1,280 & 1,270 & 449 & 821 & 1,011.3 & 448.6 & 562.7 \\
\hline 1972 & 3,351 & 1,088 & 2,263 & 2,041 & 627 & 1,414 & 1,310 & 461 & 849 & 1,129.7 & 507.4 & 622.3 \\
\hline 1973 & 3,711 & 1,269 & 2,442 & 2,309 & 768 & 1,541 & 1,402 & 501 & 901 & 1,283.0 & 654.3 & 628.7 \\
\hline 1974 & 3,927 & 1,255 & 2,672 & 2,473 & 764 & 1,709 & 1,454 & 491 & 963 & 1,355.3 & 624.4 & 730.8 \\
\hline 1975 & 4,373 & 1,402 & 2,971 & 2,766 & 850 & 1,916 & 1,607 & 552 & 1,055 & 1,517.5 & 746.4 & 71.1 \\
\hline 1976 & 4,885 & 1,646 & 3,239 & 3,149 & 1,050 & 2,099 & 1,736 & 596 & 1,140 & 1,341.8 & 664.1 & 677.7 \\
\hline 1977 & 5,145 & 1,761 & 3,384 & 3,358 & 1,145 & 2,213 & 1,787 & 616 & 1,171 & 1,277.9 & 618.1 & 659.7 \\
\hline 1978 & 5,108 & 1,696 & 3,412 & 3,314 & 1,096 & 2,218 & 1,794 & 600 & 1,194 & 1,318.9 & 648.2 & 670.7 \\
\hline 1979 & 5,338 & 1,794 & 3,544 & 3,417 & 1,138 & 2,279 & 1,921 & 656 & 1,265 & 1,385.6 & 654,4 & 731.2 \\
\hline 1980 & 5,521 & 1,856 & 3,665 & 3,472 & 1,174 & 2,298 & 2,049 & 682 & 1,367 & 1,429.1 & 684.5 & 749.6 \\
\hline 1981 & 5,647 & 1,901 & 3,746 & 3,527 & 1,167 & 2,360 & 2,120 & 734 & 1,386 & 1,442.5 & 691.9 & 750.6 \\
\hline 1982 & 5,706 & 1,917 & 3,789 & 3,561 & 1,152 & 2,409 & 2,145 & 765 & 1,380 & 1,391.2 & 699.5 & 696.7 \\
\hline 1983 & 5,635 & 1,849 & 3,786 & 3,583 & 1,174 & 2,409 & 2,052 & 675 & 1,377 & 1,458.4 & 686.6 & 771.8 \\
\hline 1984 & 5,478 & 1,790 & 3,688 & 3,441 & 1,100 & 2,341 & 2,037 & 690 & 1,347 & 1,392.7 & 661.3 & 731.4 \\
\hline
\end{tabular}
a/From the American Dental Association (1969-84).
b/part-time faculty positions expressed as full-time equivalents are available for clinical departments only.

APPEMOIX TAELE Al4 Research and Development Revenue and Expenditures in U.S. Dental Schools, by Control of Institution, 1968-83a/ (S thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|l|}{R60 Revenueb/} & \multicolumn{6}{|l|}{Clinical RLD Expenditures} & \multicolumn{5}{|l|}{\multirow[b]{2}{*}{Avg, RBO Revenue per School}} \\
\hline & \multicolumn{6}{|l|}{(no. of schools reporting is shown in parentheses)} & \multicolumn{6}{|l|}{(no. of schools reporting is shown in parentheses)} & & & & & \\
\hline & \multicolumn{3}{|l|}{Current Dollars} & \multicolumn{3}{|l|}{1972 Dollars} & \multicolumn{3}{|l|}{Current Dollars} & \multicolumn{3}{|l|}{1972 Dollars \({ }^{\text {c/ }}\)} & Curren & ent Dollars & & Dolla & ars \({ }^{\text {c }}\) \\
\hline Yedr & Total & Public & Private & Total & Public & Private & Total & Public & Private & Tot, & Pub, & & & Pub, Priv. & & Pub.Pr & \\
\hline 1968 & 14,019 (46) & 8,667 (23) & 5,352 (23) & 16,972 & 10,493 & 6,979 & n/d & n/d & n/d & n/d & n/d & n/d & & 371233 & & 456 & \\
\hline 1969 & 14,019 (47) & 9,193 (24) & 4,826 (2]) & 16,169 & 10,603 & 5,566 & \(n / 8\) & n/d & \(n / d\) & n/d & n/d & n/d & & 383210 & & 442 & 249 \\
\hline 1910 & 14,869 (47) & B,443 (24) & 6,476 (23) & 16,268 & 9,231 & 1,031 & n/d & n/d & \(n / d\) & & n/d & \(n / 8\) & & 352279 & & 385 & \\
\hline 1971 & 15,634 (47) & 10,035 (25) & 5,599 (22) & 16,285 & 10,453 & 5,832 & n/d & n/d & n/d & n/d & n/d & n/d & & 401 255 & & & \\
\hline 1972 & 17,155 (48) & 12,153 (27) & 5,002 (21) & 17,155 & 12,153 & 5,002 & n/d & n/d & n/d & n/d & n/d & n/d & & 450238 & & 450 & \\
\hline 1973 & 18,969 (49) & 13,250 (27) & 5,720 (22) & 17,929 & 12,524 & 5,406 & n/d & n/d & n/d & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & & 491260 & & & \\
\hline 1974 & 20,718 (50) & 14,787 (28) & 5,931 (22) & 17,860 & 12,741 & 5,113 & 10,13] (39) & 1,460 (23) & 2,673 (16) & 8,735 & 6,431 & 2,304 & & 528270 & & 455 & \\
\hline 1975 & 21,197 (49) & 14,330 (28) & 6,266 (21) & 16,664 & 11,737 & 4,926 & 10,512 (43) & 8,151 (27) & 2,354 (15) & A, 264 & 6,413 & 1,851 & & 533 298 & & 419 & 235 \\
\hline 1976 & 23,975 (50) & 15,135 (28) & 7.840 (22) & 11,904 & 12,050 & 5,855 & 12,265 (42) & 8,223 (27) & 4,043 (15) & 9,161 & 6,141 & 3,019 & & 576356 & & & \\
\hline 1971 & 26,586 (54) & 18,250 (32) & 8,337 (22) & 18,762 & 12,879 & 5,888 & 11,369 (45) & 8,451 (28) & 2.918 (17) & 8,023 & 5,964 & 2,059 & & 570 & & & \\
\hline 1978 & 28,500 (56) & 19,565 (33) & 8,935 (22) & 18,744 & 12,868 & 5,876 & 13, 1898 (47) & 9,939 288 & 3, 350 (19) & 8,806 & 6,537 & 2,269 & & . 593389 & & & \\
\hline 1979
1980 & 30,935 (56) & 21,112 (33) & 9,824 (2]) & 18,696 & 12,760 & 5,937 & 12,602 (42) & 9,89] [21) & 2,710 (15) & 1,616 & 5,979 & 1,638 & & 640427 & & & 258 \\
\hline 1980 & 33,960 (57) & 23,645 (34) & 10,315 (23) & 19,148 & 13,312 & 5,816 & 15,100 (42) & 12,938 (28) & 2,262 (14) & 8,514 & 1,238 & 1,275 & & 695419 & & 392 & \\
\hline 1981 & 42,318 (55) & 29,010 (33) & 13,308 (22) & 21,861 & 14,986 & 6,875 & 19,025 (41) & 15,176 (27) & 3,849 (14) & 9,828 & 1.840 & 1,988 & & 879605 & & & \\
\hline 1982 & 46,705 (57) & 31,804 (34) & 14,902 (23) & 22,547 & 15,353 & 7,194 & 24,121 (42) & 18,897 & 5,274 (15) & 11,644 & 9,098 & 2,546 & & 935648 & & & \\
\hline 1983 & 47,843 (51) & 31,936 (39) & 15,908 (23) & 22,187 & 14,810 & 1,378 & 22,328 (43) & 17,442 (27) & 4,886 (16) & 10,355 & 8,089 & 2,266 & & 939692 & & & \\
\hline
\end{tabular}

8/Froa the American Dental Association (1969-88).
\(\mathrm{b} /\) exeludes indirett cost allownces.
C/ 1972 dollars were obtained by using the Inplicit Gup Price Defldtor (U.S. Bureau of the Census--See Appendix Toble A).

APPENDIX TABLE AI5 Dental Clinic Revenue in U.S. Dental Schools, by Control of Institution, 1968-833-/ (\$ thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{Fiscal Year} & \multicolumn{6}{|l|}{Dental Clinic Revenue} & \multicolumn{6}{|l|}{\multirow[b]{2}{*}{Average Dental Clinical Revenue per School}} \\
\hline & \multicolumn{6}{|l|}{(no. of schools reporting is shown in parentheses)} & & & & & & \\
\hline & \multicolumn{3}{|l|}{Current Dollars} & \multicolumn{3}{|l|}{9972 Dollars b/} & \multicolumn{3}{|l|}{Current Dollars} & \multicolumn{3}{|l|}{1972 Dollars b/} \\
\hline & Total & Public & Private \\
\hline 1968 & 12,563 (46) & 5,182 (23) & 7,381 (23) & 15,209 & 6,274 & 8,936 & 273 & 225 & 321 & 331 & 273 & 388 \\
\hline 1969 & 14,004 (47) & 5,871 (24) & 8,133 (23) & 16,152 & 6,772 & 9,381 & 298 & 245 & 354 & 349 & 282 & 408 \\
\hline 1970 & 16,023 (4?) & 6,272 (24) & 9,751 (23) & 17,531 & 6,862 & 10,669 & 341 & 261 & 424 & 373 & 286 & 464 \\
\hline 1971 & 18,490 (47) & 1,52] (25) & 10,969 (22) & 19,260 & 7,834 & 11,426 & 393 & 301 & 499 & 410 & 313 & 519 \\
\hline 1972 & 20,566 (49) & 8,858 (27) & 11,709 (22) & 20,565 & 8,858 & 11,709 & 420 & 328 & 532 & 420 & 328 & 532 \\
\hline 1973 & 21,787 (48) & 9,481 (25) & 12,306 (23) & 20,593 & 8,961 & 11,631 & 454 & 379 & 535 & 429 & 358 & 506 \\
\hline 1974 & 27,510 (51) & 12,669 (28) & 14,701 (23) & 23,716 & 11,042 & 12,673 & 539 & 458 & 639 & 465 & 394 & 551 \\
\hline 1975 & 32,193 (50) & 14,724 (27) & 17,469 (23) & 25,309 & 11,576 & 13,733 & 644 & 545 & 760 & 506 & 429 & 597 \\
\hline 1976 & 38,656 (52) & 17,939 (28) & 20,716 (24) & 28,869 & 13,397 & 15,471 & 743 & \(64 i\) & 863 & 555 & 479 & 645 \\
\hline 1977 & 43,989 (55) & 21,010 (31) & 22,979 (24) & 31,044 & 14,827 & 16,217 & 800 & 678 & 958 & 564 & 478 & 676 \\
\hline 1978 & 47,588 (57) & 21,946 (33) & 25,642 (24) & 31,298 & 14,433 & 16,746 & 835 & 665 & 1,061 & 549 & 437 & 698 \\
\hline 1979 & 57,980 (59) & 29,065 (35) & 28,914 (24) & 35,042 & 17,566 & 17,475 & 983 & 830 & 1,205 & 564 & 502 & 728 \\
\hline 1980 & 63,500 (59) & 31,912 (35) & 31,587 (24) & 35,803 & 17,993 & 17,810 & 1,076 & 912 & 1,316 & 607 & 514 & 742 \\
\hline 1981 & 74,141 (58) & 38,321 (34) & 35,820 (24) & 38,300 & 19,796 & 18,504 & 1,278 & 1,127 & 1,493 & 660 & 582 & 771 \\
\hline 1982 & 82,312 (59) & 42,099 (34) & 40,212 (25) & 39,736 & 20,323 & 19,412 & 1,395 & 1,238 & 1,609 & 674 & 598 & 176 \\
\hline 1993 & 94,272 (60) & 49,524 (35) & 44,748 (25) & 43,719 & 22,967 & 20,75? & 1,571 & 1,415 & 1,790 & 729 & 656 & 830 \\
\hline
\end{tabular}
a/From the American Dental Association (1969-84).
b/1972 dollars were obtained by using the Implicit GNP Price Deflator (U.S. Bureau of the Census--See Appendix Table A7).

APPenoix Table Al6 Dental School Tuition Revenue, by Control of Institution, 1968-83a/ (\$ thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{Fiscal Year} & \multicolumn{6}{|l|}{Dental School Tuition Revenue} & \multicolumn{6}{|l|}{\multirow[b]{2}{*}{Average Tuition Revenue per School}} \\
\hline & \multicolumn{6}{|l|}{(no. of schools reporting is shown in parentheses)} & & & & & & \\
\hline & \multicolumn{3}{|l|}{Current Dollars} & \multicolumn{3}{|l|}{1972 Dollars b/} & \multicolumn{3}{|l|}{Current Dollars} & \multicolumn{3}{|l|}{1972 Oollars 6} \\
\hline & Total & Public & Private \\
\hline 1968 & 20,282 (46) & 6,239 (23) & 14,043 (23) & 24,554 & 7,553 & 17,001 & 441 & 271 & 611 & 534 & 328 & 739 \\
\hline 1969 & 22,994 (47) & 6,622 (24) & 16,372 (23) & 26,521 & 1,638 & 18,884 & 489 & 276 & 712 & 564 & 318 & 821 \\
\hline 1970 & 26,367 (47) & 6,882 (24) & 19,210 (23) & 28,848 & 7,530 & 21,018 & 561 & 287 & 835 & 613 & 314 & 914 \\
\hline 1971 & 28,793 (47) & 7,836 (24) & 20,957 (23) & 29,993 & 8,163 & 21,830 & 613 & 327 & 911 & 638 & 340 & 949 \\
\hline 1972 & 36,278 (48) & 10,511 (26) & 25,767 (22) & 36,278 & 10,511 & 25,767 & 756 & 404 & 1,171 & 756 & 404 & 1,171 \\
\hline 1973 & 41,129 (49) & 12,003 (26) & 29,125 (23) & 38,874 & 11,345 & 27,528 & 839 & 462 & 1,266 & 793 & 436 & 1,197 \\
\hline 1974 & 46,197 (51) & 13,911 (28) & 32,286 (23) & 39,825 & 11,992 & 27,833 & 906 & 497 & 1,404 & 781 & 428 & 1,210 \\
\hline 1975 & 51,648 (51) & 15,209 (28) & 36,440 (23) & 40,604 & 11,957 & 28,648 & 1,013 & 543 & 1,584 & 796 & 427 & 1,246 \\
\hline 1976 & 58,266 (53) & 16,623 (29) & 41,643 (24) & & 12,414 & 31,100 & 1,099 & 573 & 1,735 & 821 & 428 & 1,296 \\
\hline 1977 & 67,818 (56) & 19,872 (32) & 47,946 24 & 47,860 & 14,024 & 33,836 & 1,211 & 621 & 1,998 & 855 & 438 & 1,410 \\
\hline 1978 & 78,930 (57) & 23,266 (33) & 55,664 (24) & & 15,302 & 36,609 & 1,385 & 705 & 2,319 & 91 & 464 & 1,525 \\
\hline 1979 & 94,394 (59) & 26,860 (35) & 67,534 (24) & 57,049 & 16,234 & 40,816 & 1,600 & 767 & 2,814 & 967 & 464 & 1,701 \\
\hline 1980 & 108,341 (59) & 29,059 (35) & 79,273 (24) & 61,085 & 16,390 & 44,696 & 1,836 & 831 & 3,303 & 1,035 & 468 & 1,862 \\
\hline 1981 & 115,668 (59) & 32,716 (35) & 82,897 (24) & 59,752 & 16,901 & 42,823 & 1,961 & 935 & 3,454 & 1,013 & 483 & 1,784 \\
\hline 1982 & 147,308 (60) & 39,690 (35) & 107,618 (25) & 71,112 & 19,160 & 51,952 & 2,455 & 1,134 & 4,305 & 1,185 & 547 & 2,078 \\
\hline 1983 & 164,990 (60) & 46,018 (35) & 18,972 (25) & 76,515 & 21,341 & 55,174 & 2,750 & 1,315 & 4,759 & 1,275 & 610 & 2,207 \\
\hline
\end{tabular}
a/From the Amer ican Dental Association (1969-84).
b/1972 dollars were obtained by using the Implicit GNP Price Deflator (U.S. Bureau of the Census--See Appendix Table A7).

APPEMDIX TABLE AI7 Revenue from State and Local Governments in U.S. Dental Schools, by Control of Institution, 1968-833/2 (\$ thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{Fiscal Year} & \multicolumn{6}{|l|}{Revenue from State/Local Governments \({ }^{\text {b/ }}\)} & \multicolumn{6}{|l|}{\multirow[b]{2}{*}{Average State/Local Govt. Revenue per School}} \\
\hline & \multicolumn{6}{|l|}{(no. of schools reporting is shown in parentheses)} & & & & & & \\
\hline & \multicolumn{3}{|l|}{Current Dollars} & \multicolumn{3}{|l|}{1972 Dollars 5} & \multicolumn{3}{|l|}{Current' Dollars} & \multicolumn{3}{|l|}{1972 Dollars \({ }^{\text {c/ }}\)} \\
\hline & Total & Public & Private \\
\hline 1968 & 27,130 (23) & 27,130 (23) & & 32,845 & 32,845 & 0 & 590 & 1,180 & 0 & & 1,428 & 0 \\
\hline 1969 & 32,980 (24) & 32,980 (24) & & 38,039 & 38,039 & 0 & 702 & 1,374 & 0 & & 1,585 & 0 \\
\hline 1970 & 40,488 (24) & 40,488 (24) & - & 44,298 & 44,298 & - & 861 & 1,687 & 0 & & 1,846 & 0 \\
\hline 1971 & 34,545 (24) & 33,418 (20) & 1,127 (04) & 35,984 & 34,810 & 1,174 & 720 & 1,337 & 49 & & 1,392 & 51 \\
\hline 1972 & 68,206 (40) & 62,084 (27) & 6,123 (13) & 68,206 & 62,084 & 6,123 & 1,392 & 2,299 & 278 & 1,392 & 2,299 & 278 \\
\hline 1973 & 85,874 (40) & 78,321 (27) & 7,553 (13) & 81,166 & 14,027 & 7,139 & 1,718 & 2,901 & 328 & 1,623 & 2,742 & 310 \\
\hline 1974 & 99,707 (43) & 87,857 (28) & 11,851 (15) & 85,954 & 75,739 & 10,216 & 1,955 & 3,138 & 515 & 1,685 & 2,705 & 444 \\
\hline 1975 & 117,582 (43) & 102,656 (28) & 14,906 (15) & 92,439 & 80,720 & 11,719 & 2,306 & 3,667 & 648 & 1,812 & 2,883 & 510 \\
\hline 1976 & 142,735 (46) & 122,968 (29) & 19,767 (17) & 106,598 & 91,836 & 14,763 & 2,693 & 4,240 & 824 & 2,011 & 3,167 & 615 \\
\hline 1977 & 175,927 (51) & 151,564 (32) & 24,363 (19) & 124,155 & 106,961 & 17,193 & 3,142 & 4,736 & 1,015 & & 3,343 & 716 \\
\hline 1978 & 205,975 (52) & 177,737 (33) & 28,237 (19) & 135,465 & 116,894 & 18,571 & 3,614 & 5,385 & 1,177 & 2,377 & 3,542 & 774 \\
\hline 1979 & 225,763 (54) & 195,132 (35) & 30,630 (19) & 136,446 & 117,933 & 18,512 & 3,827 & 5,575 & 1,276 & & & 771 \\
\hline 1980 & 253,433 (53) & 217,464 (35) & 35,968 (18) & 142,892 & 122,612 & 20,280 & 4,296 & 6,213 & 1,499 & 2,422 & 3,503 & 845 \\
\hline 1981 & 280, 176 (59) & 243,719 (35) & 36,457 (24) & 144,734 & 125,901 & 18,833 & 4,749 & 6,963 & 1,519 & 2,453 & & 785 \\
\hline 1982 & 306,572 (54) & 268, 196 (35) & 38,375 (19) & 147,995 & 129,469 & 18,525 & 5,110 & 7,663 & 1,535 & 2,467 & 3,699 & 741 \\
\hline 1983 & 318,326 (54) & 278,307 (35) & 40,019 (19) & 147,626 & 129,067 & 18,559 & 5,305 & 1,952 & 1,601 & 2,460 & 3,688 & 742 \\
\hline
\end{tabular}
a/From the American Dental Association (1969-84).
b/Excludes sponsored research and education programs, and indirect cost allowances.
c/ 1972 dollars were obtained by using the Implicit GNP Price Deflator (U.S. Bureau of the Census--See Appendix Table A7).

APPEVIIX TABEE A18 Total Reverne in U.S. Dental Schools, by Control of Institution, 1968-833/ (\$ thussands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{\begin{tabular}{l}
Fiscal \\
Year
\end{tabular}} & \multicolumn{6}{|l|}{Total Dental School Revenue} & \multicolumn{6}{|l|}{Total Revenue per School} \\
\hline & \multicolumn{12}{|l|}{(no. of schools reporting is shown in parentheses)} \\
\hline & \multicolumn{3}{|l|}{Current Dollars} & \multicolumn{3}{|l|}{1972 Dollars \({ }^{\text {b/ }}\)} & \multicolumn{3}{|l|}{Current Dollars} & \multicolumn{3}{|l|}{1972 Dollars \({ }^{\text {b/ }}\)} \\
\hline & Total & Public & Private & Total & Public & Private & Total & Public & Private & Total P & Public P & Private \\
\hline 1968 & 108,649 (46) & 65,164 (23) & 43,485 (23) & 131,536 & 78,891 & 52,645 & 2,362 & 2,833 & 1,891 & 2,860 & 3,430 & 2,289 \\
\hline 1969 & 127,076 (47) & 76,126 (24) & 50,950 (23) & 146,570 & 47,804 & 58,765 & 2,704 & 3,172 & 2,215 & 3,119 & 3,658 & 2,555 \\
\hline 1970 S & 141,960 (47) & 85,290 (24) & 56,670 (23) & 155,317 & 93,315 & 62,002 & 3,020 & & 2,464 & 3,305 & 3,888 & 2,696 \\
\hline 1971 & 167,141 (48) & 94,453 (25) & 72,688 (23) & 174,105 & 98,389 & 75,717 & 3,482 & 3,778 & 3,160 & 3,627 & 3,935 & 3,292 \\
\hline 1972 & 195, 625 (49) & 116,467 (27) & 79, 157 (22) & 195,625 & 116,467 & 79,157 & 3,992 & 4,314 & 3,598 & 3,992 & 4,316 & 3,598 \\
\hline 1973 & 238,210 (50) & 147,124 (27) & 91,086 (23) & 225,152 & 139,059 & 86,093 & 4,764 & 5,449 & 3,960 & 4,503 & 5,150 & 3,743 \\
\hline 1974 & 270,705 (51) & 170,496 (28) & 100,209 (23) & 233, 365 & 146,979 & 86,387 & 5,308 & 6,089 & 4,357 & 4,576 & 5,249 & 3,756 \\
\hline 1975 & 310,388 (51) & 191,518 (28) & 118,869 (23) & 244,016 & 150,565 & 93,451 & 6,086 & 6,840 & 5,168 & 4,785 & 5,377 & 4,063 \\
\hline 1976 & 347,804 (53) & 216,421 (29) & 131,383 (24) & 259,749 & 161,629 & 98,120 & 6,562 & 7,463 & 5,474 & 4,901 & 5,573 & 4,088 \\
\hline 1977 & 394,938 (56) & 251,414 (32) & 143,524 (24) & 278,714 & 177,427 & 101,287 & 7,053 & 7,857 & 5,980 & 4,977 & 5,545 & 4,220 \\
\hline 1978 & 441,075 (57) & 281,661 (33) & 159,414 (24) & 290,086 & 185,242 & 104,843 & 7,738 & 8,535 & 6,642 & & 5,613 & 4,368 \\
\hline 1979 & 489,932 (59) & 311,643 (35) & 178,289 (24) & 296,103 & 188,350 & 107,754 & 8,304 & 8,904 & 1,429 & 5,013 & 5,381 & 4,490 \\
\hline 1980 & 541,413 (59) & 341,357 (35) & 200,057 (24) & 305,262 & 192,466 & 112,797 & 9,177 & 9,753 & 8,336 & 5,174 & 5,499 & 4,700 \\
\hline 1981 & 607,113 (59) & 380,828 (35) & 226,284 (24) & 313,624 & 196,729 & 116,894 & 10,290 & 10,881 & 9,429 & & 5,621 & 4,871 \\
\hline 1982 & 665,168 (60) & 415,991 (35) & 249,177 (25) & 321, 105 & 200,816 & 120,288 & 11,086 & 11,886 & 9,967 & & & \\
\hline 1983 & 699,811 (60) & 434,584 (35) & 265,227 (25) & 324,543 & 201,542 & 123,001 & 11,664 & 12,417 & 10,609 & & 5,758 & 4,920 \\
\hline
\end{tabular}
a/From the American Dental Association (1959-84).
b/1972 dollars were obtained by using the Implicit GNP Price Deflator (U.S. Bureau of the Census--See Appendix Table A7), c/Public figures for 1970 are interpolated.

201

APPENOIX TABLE Al9 Full-Time Budgeted Vacancies on U.S. Dental School Faculties, by Control of Institution, 1969-84al
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Fiscal } \\
& \text { Year } \\
& \hline
\end{aligned}
\]} & \multicolumn{3}{|l|}{All Departments} & \multicolumn{3}{|l|}{Basic Science Depts.} & \multicolumn{3}{|l|}{Clinical Science Depts.} \\
\hline & Total & Public & Private & Total & Public & Private & Total & Public & Private \\
\hline 1969 & 293 & 223 & 70 & 110 & 79 & 31 & 183 & 144 & 39 \\
\hline 1970 & 201 & 101 & 100 & 60 & 23 & 37 & 141 & 78 & 63 \\
\hline 1971 & 167 & 102 & 65 & 51 & 26 & 25 & 116 & 76 & 40 \\
\hline 1972 & 160 & 102 & 58 & 42 & 22 & 20 & 118 & 80 & 38 \\
\hline 1973 & 268 & 189 & 79 & 79 & 51 & 28 & 189 & 138 & 51 \\
\hline 1974 & 278 & 176 & 102 & 76 & 50 & 26 & 202 & 126 & 76 \\
\hline 1975 & 224 & 147 & 71 & 45 & 33 & 12 & 179 & 114 & 65 \\
\hline 1976 & 203 & 132 & 71 & 43 & 24 & 19 & 160 & 108 & 52 \\
\hline 1977 & 179 & 116 & 63 & 37 & 24 & 13 & 142 & 92 & 50 \\
\hline 1978 & n/d & n/a & n/a & n/a & n/a & \(\mathrm{n} / \mathrm{a}\) & n/a & n/d & n/a \\
\hline 1979 & 193 & 105 & 88 & 49 & 19 & 30 & 144 & 86 & 58 \\
\hline 1980 & 191 & 113 & 78 & 39 & 19 & 20 & 152 & 94 & 58 \\
\hline 1981 & 161 & 94 & 67 & 34 & 20 & 14 & 127 & 74 & 53 \\
\hline 1982 & 174 & 87 & 87 & 37 & 25 & 12 & 137 & 62 & 75 \\
\hline 1983 & 192 & 120 & 72 & 49 & 36 & 13 & 143 & 84 & 59 \\
\hline 1984 & 238 & 158 & 80 & 50 & 33 & 17 & 188 & 125 & 63 \\
\hline
\end{tabular}

2/From the American Dental Association (1969-84).

APPENDIX TABLE A20 NIH Trainees and Fellows in Clinical Dental Research, 1977-84a/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{3}{|l|}{Total} & \multicolumn{3}{|l|}{Trainees} & \multicolumn{3}{|l|}{Fellows} \\
\hline & Total & Predoc & Postdoc & Total & Predoc & Postdoc & Total & Predoc & Postdoc \\
\hline 1977 & 182 & 24 & 158 & 159 & 24 & 135 & 23 & 0 & 23 \\
\hline 1978 & 187 & 33 & 154 & 166 & 33 & 133 & 21 & 0 & 21 \\
\hline 1979 & 166 & 25 & 141 & 134 & 25 & 109 & 32 & 0 & 32 \\
\hline 1980 & 217 & 93 & 124 & 192 & 93 & 99 & 25 & 0 & 25 \\
\hline 1981 & 157 & 25 & 132 & 114 & 25 & 89 & 43 & 0 & 43 \\
\hline 1982 & 126 & 26 & 100 & 107 & 26 & 81 & 19 & 0 & 19 \\
\hline 1983 & 111 & 20 & 91 & 102 & 20 & 82 & 9 & 0 & 9 \\
\hline 1984 & 101 & 20 & 81 & 101 & 20 & 81 & 0 & 0 & 0 \\
\hline
\end{tabular}
a/Figures were obtained from the Division of Research Grants, NIH.
\[
202
\]

\section*{APPENDIX B Biomedical Sciences Data}
TABLE Bl Biomedical Science Enrollments in Colleges and Universities, by Control of Institution, 1960-84 ..... 185
First-Year Graduate Enrollment in the Biomedical Sciences, 1960-84 ..... 186
B3 Biomedical Science Degrees Awarded in Collegesand Liniversities, by Control of Institution,and Postdoctoral Appointments in All EmploymentSectors, 1960-84187
Total Undergraduate Degree-Credit Enrollment,Total B.A. Degrees Awarded, and Ratio ofBiomedical Science B.A.s to Total B.A.s, byControl of Institution, 1960-83
Ph.D.s Employed in the Biomedical Sciences,1960-83189
Three-Year Moving Average of Biomedical Science Undergraduate and Graduate Enrollments, 1962-83 ..... 190
National Expenditures for Health-Related\(R\) and \(D, 1960-84\) ( \(\$\) millions)191
B8 NIH Research Grant Expenditures, 1965-84(\$ millions)Biomedical Science \(R\) and \(D\) Expenditures inColleges and Universities, by Control ofInstitution, 1960-83 (\$ millions)193
Bl0 Average Biomedical Science \(R\) and \(D\) Expendituresper School in Colleges and Universities, byControl of Institution, 1972-83 (1972 \$,thousands)194
Bll Indirect Costs of NIH-Sponsored Research Grants at Insti.tutions of Higher Education, 1970-83 ..... 195B1. 2 Ph.D.s Academically Employed in the BiomedicalSciences, by Employment Status and Type ofIrıstitution, 1973-83196Bl3 Faculty Attrition Rates at U.S. Medical Schools,by Department and Degree Type, 1970-81197

\section*{APPENDIX B (cont'd.)}

Biomedical Sciences Data
\begin{tabular}{|c|c|c|}
\hline TABLE Bl4 & Fostdoctoral Research Training of New Faculty Hires in U.S. Medical Schools, by Department and Degree Type, 1970-81 & 198 \\
\hline B15 & Graduate School Attrition Rates in the Biomedical Sciences, 1960-71 & 199 \\
\hline B16 & Percent of the postdoctoral Population in the Biomedical Sciences Who Had Earned Their Doctorates More than 2, 3, or 4 Years Earlier, 1973-83 & 200 \\
\hline B17 & Projected Combined Death and Retirement Rates as Percent of Total Faculty, by Broad Field of Science and Engineering, 1976-2000 & 201 \\
\hline B18 & Actual and Projected Age Distribution of Academically Employed Biomedical Science Ph.D.s & 202 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Elscal } \\
& \text { Year }
\end{aligned}
\]} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Total Undergradute and Gridute Enrollment}} & \multicolumn{12}{|c|}{Gradute Enroliment} \\
\hline & & & & \multicolumn{3}{|l|}{Esthated Undergradute Enrolimenty} & \multicolumn{3}{|l|}{Total Medical, Dental, and Blomed. Scl. Graduale} & \multicolumn{3}{|l|}{Medical and Dentals} & \multicolumn{3}{|l|}{Blamedical Science Graduated} \\
\hline & Total & Public & Privue & Total & Public & Privat & T0tal & Public & Privat & Total & Public & Prluate & Total & Public & Private \\
\hline 1880 & 197,419 & n/1 & n/1 & 143,037 & n/4 & n/1 & 54,382 & n/8 & n/1 & 43,665 & n/d & n/a & 10,717 & 6,516 & 1,201 \\
\hline 1951 & 217,711 & n/4 & n/1 & 161,236 & n/2 & n/1 & 56,473 & n/8 & n/1 & 11,268 & n/d & n/8 & 12,201 & 1,768 & 1,439 \\
\hline 1982 & 21,95 & n/1 & n/1 & 183,600 & n/4 & n/4 & 58,055 & n/d & n/d & 11,590 & n/a & \(\pi / 8\). & 13,465 & 8,841 & 1,624 \\
\hline  & 265,554 & n/1 & n/1 & 205,039 & n/2 & n/1 & 59,695 & n/8 & n/d & 11,814 & \(n / 1\) & n/1 & 11,881 & 9,821 & 5,054 \\
\hline 190 & 288, 169 & n/1 & n/1 & 223,002 & n/4 & n/1 & 63,167 & n/4 & n/1 & 15,692 & n/a & \(n / 1\) & 17,475 & n/d & n/4 \\
\hline 1985 & 279,311 & n/d & n/1 & 213,042 & n/a & n/1 & 66,329 & n/4 & n/1 & 15,982 & n/d & n/d & 20,347 & n/1 & n/d \\
\hline 186 & 301,521 & n/a & n/1 & 231,971 & 190/4 & n/1 & 69,941 & n/a & n/1 & 16,512 & n/d & n/o & 23,43? & n/1 & n/1 \\
\hline 1961
1988 & 311,635
327,40 & n/1 & n/1 & 239,725
25170 & 161,555 & 18,170 & 11,910 & n/d & n/8 & 17,563 & n/9 & n/8 & 21,347 & n/4 & n/a \\
\hline 1989 & 321,90 & n/1 & n/1 & 251, 110 & 173,006 & 17,504 & 16,770 & n/2 & n/d & 19,73 & n/8 & n/1 & 27,197 & n/\% & n/9 \\
\hline \(19 \%\) & 358,188
384,392 & n/s & n/1 & 279,180 & 200,825 & 78,315 & 98,006 & n/d & n/1 & 50,510 & n/8 & n/1 & 28,496 & n/8 & n/d \\
\hline \(19 \%\) & 30,132 & n/1 & n/1 & 299,553 & 220,013 & 19,480 & 61,829 & n/d & n/1 & 53,986 & n/d & n/t & 30,84] & n/8 & n/4 \\
\hline 1911 & 114,650 &  & n/1 & 325,018 & 22,058 & 82,960 & 89,632 & m/a & n/4 & 51,029 & n/4 & n/1 & 32,603 & n/1 & n/d \\
\hline 1912
1973 & 139,671
480,055 & 318,900
350,954 & 119,771
124 & 313,587
379 & 259,192 & 84, 8105 & 99,084 & 59,408 & 35,676 & 60,881 & 31,369 & 26,512 & 3,203 & 25,039 & 9,164 \\
\hline 1977
197 & 1880,055
510,603 & 350,954
376,292 & 124,101
131,311 & 379,268
101,881 & 268, 109
309,500 & 91,159 & 100,781 & 62,815 & 32,942 & 65,899 & 37,990 & 28,509 & 34,888 & 25, 155 & 9,133 \\
\hline 1975 & 537,015 & 399,593 & 137,482 & 421,539 & 328,697 & 95,842 & 112,536 & 70,895 & 11,640 & 6,
41,222 & 42,7131 & 29,950
31,491 & 38,111
38,314 & 26,317
28,165 & 9,110
10,119 \\
\hline 1976 & 556,219 & 417,055 & 139,223 & 439,46 & 343,184 & 96,762 & 116,333 & 73,872 & 42,461 & 11,011 & 11,209 & 32,062 & 19,322 & 28,923 & 10,399 \\
\hline 1977 & 54, 5302 & 400, 393 & 135,009 & 125,633 & 312,70 & 93,093 & 118,539 & 75,623 & 12,916 & 79,279 & 46,657 & 32,622 & 39,260 & 28,966 & 10,294 \\
\hline 1978
1979 & 532,229
505,41 & 36,376
344,599 & 135
131,853
1298 & 106, 3/3 & 316,281 & 90,092 & 125,856 & 80,095 & 15,761 & 81,934 & 18,730 & 33,201 & 13,922 & 31,365 & 12,557 \\
\hline 1980 & 497, 42 & 341,598 & 131,242
129,716 & 311,551 & 292,901
285,068 & 89,650
82,637 & 1288,290 & 81,698 & 16,592
17, & 81,761 & 50,681 & 31,000 & 13,529 & 11,017 & 12,512 \\
\hline 190 & 4, & 30,500 & 19,176 & 367,05 & 293,008 & 82,637 & 129,637 & 82,98 & 17,139 & 86,502 & 51,830 & 31,672 & 13,135 & 30,668 & 12,467 \\
\hline 1981 & 492,688 & 364,613 & 128,075 & 362,053 & 281,135 & 80,917 & 130,635 & 83, 177 & 47,158 & 88,254 & 53,194 & 35,050 & 12,381 & 30,283 & 12,098 \\
\hline 1982 & \(\mathrm{n} / \mathrm{\square}\) & n/1 & n/1 & n/1 & n/a & n/1 & 10, 878 & 83, 194 & 17,394 & 89,105 & 53,693 & 35,112 & 11,73 & 29,791 & 11,982 \\
\hline 1983 & n/1 & n/1 & n/1 & n/1 & n/4 & n/1 & 130, 312 & 82, 580 & 17,392 & 89,121 & 53, 609 & 35,512 & 11,191 & 28,911 & 12, 1220 \\
\hline 1984 & n/1 & n/1 & n/a & n/0 & n/1 & n/a & 130, 385 & Bt. 183 & 17,502 & 88,865 & 53, 139 & 35,526 & 11,520 & 29,544 & 11,976 \\
\hline
\end{tabular}
s/Biamedical science undergiduate, graduate, and dentil sludenl enrolinents for leaple university and the University of piltsburgh rere counted as public; medical school enrollments wre counted is privale. The Association of harledn medical Colleges, mich provided the medeal school data, was the only dati sovice with considered those universilies to be privitely controlled.

 undergeducte degre-credt enrollment in yer I (excluding first professlonil). Public and private est mantes mere based on enrollaent ratios. See Appendix Tules 83 ind H for supporting dita.

 Assocition (1899-4 ).
 Foundation (1973-851) encept for the 1979 figure mich was interpolated. Because of diff rences in taxonowy, wisf numbers for 1978.84 total blomedical sclince grodulte students my be slightly higher than nuabers that would haye been obtained from the Depirtment of educat ion had data been collected for those yeirs. For the year 1917, MSE reported 42 , 95 graduate students emrolided in the blomedical sciences; In comporlson, the Oeportment of eductition reported a somonat lower flgure of 39,260 (as shom in this table).

APPENDIX TABLE B2 First-Year Graduate Enrollment in the Biomedical Sciences, 1960-84
\begin{tabular}{|c|c|c|}
\hline Fiscal Year & Total First-Year Graduate Enrollmenta/ & First-Year, Full-Time Graduate Enrollment in DoctorateGranting Institutions \({ }^{\text {b/ }}\) \\
\hline 1960 & 5,370 & n/a \\
\hline 1961 & 6,025 & n/a \\
\hline 1962 & 6,642 & n/a \\
\hline 1963 & 7,137 & n/a \\
\hline 1964 & 8,542 & n/a \\
\hline 1965 & 10,430 & n/a \\
\hline 1966 & 12,034 & n/a \\
\hline 1967 & 12,511 & n/a \\
\hline 1968 & 13,301 & n/a \\
\hline 1969 & 13,343 & n/a \\
\hline 1970 & 14,835 & n/a \\
\hline 1971 & 15,845 & n/a \\
\hline 1972 & 16,722 & n/a \\
\hline 1973 & 17,511 & n/a \\
\hline 1974 & 17,538 & n/a \\
\hline 1975 & 18,876 & 9,382 \\
\hline 1976 & 18,756 & 9,918 \\
\hline 1977 & 18,073 & 9,763 \\
\hline 1978 & n/a & 9,612 \\
\hline 1979 & n/a & 8,836 \\
\hline 1980 & n/a & 8,348 \\
\hline 1981 & n/a & 8,279 \\
\hline 1982 & n/a & 8,105 \\
\hline 1983 & n/a & 8,043 \\
\hline 1984 & n/a & 8,334 \\
\hline
\end{tabular}
a/From the U.S. Department of Educaition (1959-79).
b/From the National Science Foundation (1973-85a).

APPENDIX TABLE B3 Biomedical Science Degrees Akarded in Colleges and Universities, by Control of Institution, and Postdoctoral Appointments in All Employment Sectors, 1960084
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Fiscal Year} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{B,A. Degrees Awarded a/ (excluding first professional)}} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Ph.D. Degrees Awarded b/}} & \multicolumn{5}{|l|}{Postdoctoral Appointments [/} \\
\hline & & & & & & & \multirow[b]{2}{*}{Total} & \multicolumn{3}{|l|}{Acadenic d/} & \multirow[b]{2}{*}{Honacademic} \\
\hline & Total & Public & Private & Total & Public & Private & & Total & Public & Pr ivate & \\
\hline 1960 & n/d & n/a & n/d & 1,096 & n/d & n/d & 1,639 & \(n / d\) & n/d & m/d & n/d \\
\hline 1961 & 15,588 & \(n / 8\) & n/d & 1,136 & n/d & n/d & n/d & n,a & n/d & n/d & \(\pi / \pi\) \\
\hline 1962 & 16,424 & n/a & n/d & 1,272 & n/d & n/d & 1,827 & n/d & n/a & n/d & \(\pi / 8\) \\
\hline 1963 & 18,704 & \(n / 8\) & n/d & 1,341 & n/d & n/d & n/d & n/d & n/d & n/3 & \(n / 2\) \\
\hline 1964 & 22,207 & n/d & n/d & 1,552 & n/d & n/d & 2,259 & n/d & n/a & n/d & \(n / 8\) \\
\hline 1965 & 24,612 & n/a & n/d & 1,153 & n/d & \(n / d\) & \(n / \mathrm{d}\) & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & \(n / 8\) \\
\hline 1966 & 26,336 & n/d & n/d & 1,961 & \(n / d\) & n/d & 2,570 & n/d & n/d & n/d & n/d \\
\hline 1967 & 28,157 & n/a & n/d & 2,181 & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & \(n / d\) & n/a & n/d & \(n / 2\) \\
\hline 1968 & 31,221 & n/a & \(\mathrm{n} / \mathrm{a}\) & 2,545 & n/d & n/d & 3,224 & n/d & n/d & n/d & n/d \\
\hline 1969 & 34,795 & 20,338 & 14,457 & 2,854 & n/d & n/d & n/d & n/d & n/a & n/a & \(n / d\) \\
\hline 1970 & 36,868 & 22,382 & 14,486 & 3,171 & \(n / d\) & n/d & 3,837 & n/d & n/d & n/d & \(n / \mathrm{d}\) \\
\hline 1971 & 40,000 & 24,611 & 15,389 & 3,482 & n/d & 7/d & n/8 & n/d & n/a & n/d & n/d \\
\hline 1972 & 42,000 & 26,208 & 15,792 & 3,460 & 2,385 & 1,075 & n/d & n/d & n/s & m/3 & n/d \\
\hline 1973 & 45,000 & 23,236 & 16,764 & 3,520 & 2,466 & 1,054 & 3,607 & 2,883 & 1,636 & 1,247 & 724 \\
\hline 1974 & 47,434 & 29,881 & 17,553 & 3,417 & 2,327 & 1,090 & n/d & n/d & n/a & n/d & n/d \\
\hline 1975 & 50,493 & 31,841 & 18,65? & 3,515 & 2,401 & 1,114 & 5,369 & 4,361 & 2,530 & 1,831 & 1,008 \\
\hline 1976 & 52,642 & 33,244 & 19,398 & 3,578 & 2,447 & 1,131 & n/d & n/d & n/a & n/d & n/d \\
\hline 1971 & 51,783 & 32,789 & 18,994 & 3,465 & 2,386 & 1,079 & 6,312 & 5,211 & 2,836 & 2,375 & 1,101 \\
\hline 1978 & 49,101 & 30,968 & 18,733 & 3,516 & 2,438 & 1,078 & n/a & n/d & n/a & n/d & n/a \\
\hline 1979 & 47,117 & 29,241 & 18,476 & 3,644 & 2,466 & 1,178 & 1,268 & 5,974 & 3,543 & 2,431 & 1,294 \\
\hline 1980 & 45,106 & 27,279 & 17,827 & 3,822 & 2,631 & 1,191 & n/d & n/a & n/d & n/d & n/d \\
\hline 1981 & 42,297 & 25,380 & 16,917 & 3,842 & 2,595 & 1,247 & 8,026 & 6,740 & 4,064 & 2,676 & 1,286 \\
\hline 1982 & 40,150 & 24.167 & 16,583 & 3,960 & 2,665 & 1,295 & n/d & n/d & n/d & n/d & n/d \\
\hline 1983 & \(\mathrm{n} / \mathrm{d}\) & & \(n / d\) & 3,775 & 2,609 & 1,166 & 1,827 & 6,208 & 3,287 & 2,921 & 1,619 \\
\hline 1984 & n/d & & n/d & 3,894 & n/d & n/d & n/a & n/a & n/d & n/d & n/d \\
\hline
\end{tabular}
- Figures for 1961 -68 were obtained from the U.S. Department of Education (1998-81; those for 1969-82 from the U.S. Department of Education (1948-84), Figures for 1971-73 were estimated by the comittee in order to remove the distortion produced in the series by a change in the survey taxonomy in 1971. Health professions are not included.
b/from the National Research Council (1958-85). Foreign nationals who received doctorates from U.S. institutions are included.
C/Figures for \(1960-70\) were estimated by the camiltee. Figures for \(1973-83\) are based on the nost recent data available from the National Research Council (1973-84). Foreign nationals who received doctorates from U.S. institutions are included.
d/public and private figures mere adjusted by the committee to include a small nunber of individuals for mhom control of institution could not be determined.

APPEMDIX TABLE BA Total Undergraduate Degree-Credit [enrollment, Total H.A. Degrees Awarded, and Rat lo of BIomedical Science B.A.s to Total C.A.s, by Control of Institution, 1960-83


8/Figures for \(1960-64\) mere obtained from the U.S. Department of Education (1961-84a), those for \(1965-75\) from the U,S. Department of Education (1973-82), and the one for 1976 from the U.S. Department of Educt ion (1974-83). Figures for 1977-81 were obtained by subtract ing enrol lament for master's and doctor's degrees from total degree-credit enrollment (U.S. Department of Education 1974-83). Figures for \(1982-83\) were obtained by adding first professional enrollment to total undergraduate degree-credit enrollment excluding first professional. First professional enrollment data mere obtained from the U.S. Department of Education ( \(1961-846\) ). See footnote \({ }^{\mathrm{b}}\) / for source of undergraduate degree-credit enrollment for 1982-83.
b/Figures for \(1960-66\) mere estimated at \(98 \%\) of total undergraduate degree-credit enrollment (Including first professional), Those for 1967-81 were obtained by subtract ling first professions enrollment from total degree-credit undergraduate enrollment (including first professional). First professional enrollment data for 1967-77 were obtained from the U.S. Department of Education (1959-79), data for 1978-81 from the U.S. Department of Education (1961-84a). Figures for 1982-83 were derived from total undergraduate enrollment (Including nondegree-Credit) data obtained from the U.S. Department of Education (1961-84b). These data have then adjusted with the percentages used by the U.S. Department of Education to est Inmate degree-credit enrollments for 1971-80.

C/Figures for 1961-68 were obtained from the U.S. Department of Education (1988-81), those for 1969-82 from the U.S. Department of Education (1948-84).
d/See Appendix Table BJ for number of baccalaureate degrees awarded In the biomedical sciences.

APPENOIX TABEE B5 Ph.D.S Employed in the Biomedical Sciences, 1960-833/

a/Figures for \(1960-70\) were estimated by the committee. Figures for \(1973-83\) are based on the most recent data available from the National Research Council (1973-84). Foreign nationals who received doctorates from U.S, institutions are included.
b/Public and private figures were adjusted by the committee to include a small number of academically employed individuals for whom control of institution could not be determined.

APPEIIIX TABLE B6 Three-Year Moving Average of Biomedical Science Underọraduate and Graduate Enrollments, 1962-83
\begin{tabular}{|c|c|c|c|c|c|}
\hline Fiscal Year & \begin{tabular}{l}
3-Yr. Moving Average of Undergraduate Enroliments \({ }^{\text {a }}\) \\
(US)
\end{tabular} & \begin{tabular}{l}
3-Yr. Moving Average of Graduate Enrolmentsb/ \\
(GS)
\end{tabular} & \[
\begin{aligned}
& \text { Heighted } \\
& \text { Sum of US }+G S \\
& \text { (WS }=0,25 U S+0.756 S)
\end{aligned}
\] & \[
\begin{gathered}
\text { Fucultyc } \\
(F)
\end{gathered}
\] & Ph.D. Faculty/ Student Ratio ( \(\mathrm{F} / \mathrm{WS}\) ) \\
\hline 1962 & 162,711 & 56,304 & 82,908 & 9,140 & 0.1102 \\
\hline 1963 & 183,655 & 58,075 & 89,470 & n/a & n/a \\
\hline 1964 & 204,244 & 60,306 & 96,291 & 11,300 & 0.1174 \\
\hline 1965 & 213,961 & 63,066 & 100,990 & n/a & n/a \\
\hline 1966 & 222,674 & 66,480 & 105,529 & 12,870 & 0.1220 \\
\hline 1967 & 228,248 & 69,394 & 109,108 & n/a & n/d \\
\hline 1968 & 240,957 & 72,875 & 114,895 & 16,122 & 0.1403 \\
\hline 1969 & 256,692 & 75,895 & 121,094 & n/a & n/a \\
\hline 1970 & 276,634 & 80,202 & 129,311 & 19,131 & 0.1483 \\
\hline 1971 & 301,250 & 84,489 & 138,680 & n/d & n/a \\
\hline 1972 & 322,719 & 89,848 & 148,066 & n/d & n/a \\
\hline 1973 & 349,291 & 95,168 & 158,699 & 25,471 & 0.1605 \\
\hline 1974 & 375,912 & 100,531 & 169,376 & n/d & n/d \\
\hline 1975 & 402,896 & 106,348 & 180,485 & 28,332 & 0.1569 \\
\hline 1976 & 423, 122 & 111,530 & 189,429 & 30/29 & n/a \\
\hline 1971 & 430,116 & 115,803 & 194,381 & 30,384 & 0, 1563 \\
\hline 1978 & 424,061 & 120,298 & 196,239 & n/d & n/d \\
\hline 1979 & 403,262 & 124,354 & 194,082 & 33,566 & 0.1729 \\
\hline 1980 & 383,876 & 128,139 & 192,073 & n/d & n/d \\
\hline 1981 & 369,103 & 129,747 & 189,586 & 36,482 & 0.1924 \\
\hline 1982 & \(n / \mathrm{d}\) & 130,559 & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d \\
\hline 1983 & \(n / \mathrm{a}\) & 130,813 & n/d & 36,963 & n/d \\
\hline
\end{tabular}
\(2 /\) Def ined by the formula \((U S)_{t}=1 / 3\left(U_{t}+U_{t-1}+U_{t-2}\right)\), where \(U=\) undergraduate enrollments in the biomedical sciences. See Appendix Table Bl for supporting data.
b/ offined by the formula \((G S)_{t}=1 / 3\left(G_{t}+G_{t-1}+G_{t-2}\right)\), where \(G=\) graduate enrollments in the biomedical sciences. See Appendix Table Bl for supporting data.

C/Defined as all ph.D.s academically employed in the biomedical sciences (excluding postdoctoral appointments).

APPENOIX TABLE B7 National Expenditures for Health-Related \(R\) and \(0,1960-88 \mathrm{a} /\) ( \(\$\) millions)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{4}{|l|}{Current Dollars} & \multicolumn{4}{|l|}{1972 Dollars} & \multirow[b]{2}{*}{\begin{tabular}{l}
Implicit \\
Price Deflatorb/
\[
(1972=100.0)
\]
\end{tabular}} \\
\hline & Total & Federal & Private Industry & Other & Total & Federal & Private Industry & Other & \\
\hline 1960 & 886 & 448 & 253 & 185 & 1,290 & 652 & 368 & 269 & 68.70 \\
\hline 1961 & 1,087 & 574 & 312 & 201 & 1,569 & 828 & 450 & 290 & 69.30 \\
\hline 1962 & 1,333 & 782 & 336 & 215 & 1,891 & 1,109 & 477 & 305 & 70.50 \\
\hline 1963 & 1,526 & 919 & 375 & 232 & 2,131 & 1,284 & 524 & 324 & 71.60 \\
\hline 1964 & 1,698 & 1,049 & 400 & 249 & 2,336 & 1,443 & 550 & 343 & 72.70 \\
\hline 1965 & 1,890 & 1,174 & 450 & 266 & 2,544 & 1,580 & 606 & 358 & 74.30 \\
\hline 1966 & 2,111 & 1,316 & 510 & 285 & 2,749 & 1,714 & 664 & 371 & 76.80 \\
\hline 1967 & 2,345 & 1,459 & 580 & 306 & 2,968 & 1,847 & 739 & 387 & 79.00 \\
\hline 1968 & 2,568 & 1,582 & 661 & 325 & 3,109 & 1,915 & 800 & 393 & 82.60 \\
\hline 1969 & 2,785 & 1,674 & 754 & 357 & 3,212 & 1,931 & 870 & 412 & 86.70 \\
\hline 1970 & 2,847 & 1,667 & 795 & 385 & 3,115 & 1,824 & 870 & 421 & 91.40 \\
\hline 1971 & 3,168 & 1,877 & 860 & 431 & 3,300 & 1,955 & 896 & 449 & 96.00 \\
\hline 1972 & 3,536 & 2,147 & 934 & 455 & 3,536 & 2,147 & 934 & 455 & 100.00 \\
\hline 1973 & 3,750 & 2,225 & 1,048 & 477 & 3,544 & 2,103 & 991 & 451 & 105.80 \\
\hline 1974 & 4,443 & 2,754 & 1,183 & 506 & 3,830 & 2,374 & 1,020 & 436 & 116.00 \\
\hline 1975 & 4,701 & 2,832 & 1,319 & 550 & 3,696 & 2,226 & 1,037 & 432 & 127.20 \\
\hline 1976 & 5,107 & 3,059 & 1,469 & 579 & 3,814 & 2,285 & 1,097 & 432 & 133.90 \\
\hline 1977 & 5,606 & 3,396 & 1,614 & 596 & 3,956 & 2,397 & 1,139 & 421 & 141.70 \\
\hline 1978 & 6,264 & 3,811 & 1,800 & 653 & 4,120 & 2,506 & 1,184 & 429 & 152.05 \\
\hline 1979 & 7,113 & 4,321 & 2,093 & 699 & 4,299 & 2,612 & 1,265 & 422 & 165.46 \\
\hline 1980 & 7,914 & 4,723 & 2,456 & 735 & 4,436 & 2,647 & 1,377 & 412 & 178.42 \\
\hline 1981 & 8,540 & 4,848 & 2,875 & 817 & 4,376 & 2,484 & 1,473 & 419 & 195.14 \\
\hline 1982 & 9,239 & 4,970 & 3,373 & 896 & 4,466 & 2,402 & 1,630 & 433 & 206.88 \\
\hline 1983 (prelim.) & 10,208 & 5,399 & 3,887 & 922 & 4,734 & 2,504 & 1,803 & 428 & 215.63 \\
\hline 1984 (est.) & 11,538 & 6,087 & 4,486 & 965 & 5,164 & 2,724 & 2,008 & 432 & 223.43 \\
\hline
\end{tabular}
d/From NiH (special tabulations, 6/7/82, 6/8/82,5/3/84 and 7/5/85). Items may not sum to totals due to rounding. b/From the U.S. Bureau of the Census.

APPENOIX TABLE B8 NIH Research Grant Expenditures, \(1965-84\) / ( \(\$\) millions)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Fiscal Year} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Total NIH Research Grant Expenditures}} & \multicolumn{6}{|l|}{Nih Research Grant Expenditures in U.S. Colleges and Universities} \\
\hline & & & \multicolumn{3}{|l|}{Current Dollars} & \multicolumn{3}{|l|}{1972 Dollars b/} \\
\hline & Current Dollars & 1972 Dollars & Total & Public & Private & Total & Public & Private \\
\hline 1965 & 492.1 & 662.3 & n/d & n/a & n/a & \(\mathrm{n} / \mathrm{d}\) & n/d & \(n / d\) \\
\hline 1966 & 551.2 & 17.7 & n/d & n/d & n/a & n/d & n/d & n/d \\
\hline 1967 & 618.4 & 782.8 & n/a & n/d & n/a & n/d & \(n / \mathrm{d}\) & n/d \\
\hline 1968 & 647.0 & 783.3 & n/d & n/d & n/d & n/d & n/d & n/d \\
\hline 1969 & 649.1 & 748.7 & \(\mathrm{n} / \mathrm{d}\) & \(\mathrm{n} / \mathrm{d}\) & n/d & n/a & n/d & n/d \\
\hline 1970 & 624.3 & 683.0 & n/d & n/a & n/d & n/d & n/d & n/d \\
\hline 1971 & 699.7 & 728.9 & n/d & n/d & n/d & n/a & n/d & n/d \\
\hline 1972 & 826.5 & 826.5 & 676.7 & 339.7 & 337.0 & 676.7 & 339.1 & 337.0 \\
\hline 1973 & 838.5 & 792.5 & 680.7 & 332.2 & 348.5 & 643.4 & 314.0 & 329.4 \\
\hline 1974 & 1,100.8 & 949.0 & 885.0 & 448.7 & 436.3 & 762.9 & 386.8 & 376.1 \\
\hline 1975 & 1,148.0 & 902.5 & 927.3 & 469.1 & 458.2 & 729.0 & 368.8 & 360.2 \\
\hline 1976 & 1,275.8 & 952.8 & 1,025.4 & 516.1 & 509,3 & 765.8 & 385.4 & 380.4 \\
\hline 1971 & 1,435.7 & 1,013.2 & 1,148,8 & 577.5 & 571,3 & 810.7 & 407.6 & 403.2 \\
\hline 1978 & 1,638,0 & 1,077.3 & 1,322.4 & 668.4 & 654.0 & 869.7 & 439.6 & 430.1 \\
\hline 1979 & 1,951.7 & 1,179.6 & 1,579.7 & 808.6 & 771.1 & 954.7 & 488.7 & 466.0 \\
\hline 1980 & 2,161,1 & 1,211,2 & 1,742,6 & 893.2 & 849.5 & 976.7 & 500.6 & 476.1 \\
\hline 1981 & 2,331.4 & 1,194.7 & 1,882,6 & 963.7 & 918.9 & 964.7 & 493.9 & 470.9 \\
\hline 1982 & 2,407.7 & 1,163.8 & 1,937.8 & 991.2 & 946.6 & 936.7 & 479.1 & 457.6 \\
\hline 1983 & 2,702,3 & 1,253.2 & 2,175.7 & 1,097.4 & 1,078,3 & 1,009.0 & 508.9 & 500.1 \\
\hline 1984 & 3,087.0 & 1,381.8 & 2,472,8 & 1,254.9 & 1,217.9 & 1,106.9 & 561.7 & 545.2 \\
\hline
\end{tabular}
a/From NiH (1966-84; special tabulations, 6/7/82, 6/8/82, 5/2/84, and 4/12/85). Itens may not sum to totals due to rounding.
b/1972 dollars were obtained by using the Implicit GNP Price Deflator (U.S. Bureau of the Census--see Appendix Table B7). Items may not sum to totals due to rounding.

213

APPEWDIX TR:SE BP Bionedical Science R and D Expanditures in Colleges and Universities, by Control of Institution, 1960.83 (\$ millions)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{3}{|l|}{Current Dollars \({ }^{\text {d }}\)} & \multicolumn{3}{|l|}{1972 Oollars b/} & \multirow[t]{2}{*}{Heighted Sum of Blomed. SC1. \(A\) and \(D\) Expend, in Last 3 Yrs. ./ (Total, 1972 Dollars)} \\
\hline & Total & Public & Private & Total & Public & Private & \\
\hline 1960 & 281.4 & n/d & n/d & 418.3 & n/d & n/d & 363.5 \\
\hline 1961 & 339.4 & \(n / 8\) & n/d & 489.8 & n/d & n/8 & 422.6 \\
\hline 1962 & 402.2 & \(n / d\) & n/d & 570.5 & n/a & \(n / 1\) & 492.1 \\
\hline 1963 & 480.9 & n/d & n/d & 671.7 & n/d & n/d & 575.6 \\
\hline 1964 & 565.7 & n/d & n/d & 778.2 & 1/d & n/8 & 673.0 \\
\hline 1965 & 638.0 & n/d & n/d & 858.7 & n/d & n/d & 171.1 \\
\hline 1966 & 724.0 & \(n / d\) & n/d & 942.8 & n/a & n/d & 859.6 \\
\hline 1967 & 795.0 & n/d & n/d & 1,006.4 & n/d & \(\pi / 8\) & 937.6 \\
\hline 1968 & 860.7 & n/d & n/d & 1,042.1 & n/d & n/a & 999.4 \\
\hline 1969 & 917.3 & n/d & \(\mathrm{n} / \mathrm{d}\) & 1,058.0 & n/d & \(n / 4\) & 1,037.1 \\
\hline 1970 & 991.2 & n/a & \(\pi / 4\) & 1,084.5 & n/d & \(n / \mathrm{d}\) & 1,050,6 \\
\hline 1971 & 1,054,7 & n/d & n/d & 1,098.7 & n/d & n/d & 1,081.4 \\
\hline 1972 & 1,102,2 & 600.5 & 501.7 & 1,102.2 & 600.5 & 501.7 & 1,096.0 \\
\hline 1973 & 1,252.9 & 691.2 & 561.8 & 1,188,3 & 653.3 & 531.0 & 1,121.9 \\
\hline 1974 & 1,284.3 & 691.4 & 592.8 & 1,107. 1 & 596.1 & 511.1 & 1,144.5 \\
\hline 1975 & 1,517.0 & 825.5 & 691.5 & 1,192,6 & 649.0 & 543.6 & 1,147.8 \\
\hline 1976 & 1,688.8 & 937.9 & 750.9 & 1,261.3 & 700.5 & 560.8 & 1,188.4 \\
\hline 1977 & 1,798.2 & 1,002.3 & 795.9 & 1,269.0 & 707.3 & 561.7 & 1,246.0 \\
\hline 1978 & 2,038.8 & 1,158,3 & 880.5 & 1,340,9 & 761.8 & 579.1 & 1,285.0 \\
\hline 1979 & 2,227.7 & 1,237.3 & 990.4 & 1,346.4 & 747,8 & 598.6 & 1,324,3 \\
\hline 1980 & 2,538,5 & 1,433.4 & 1,105.1 & 1,422.7 & 803.4 & 619.4 & 1,364.1 \\
\hline 1981 & 2,901.1 & 1,663.1 & & & 852.2 & 634.4 & 1,419.6 \\
\hline 1982 & 3,132.7 & 1,790.8 & 1,341,9 & 1,514.3 & 865,6 & 648.6 & 1,477.6 \\
\hline 1983 & 3,316.8 & 1,911. 7 & 1,405.1 & 1,538,2 & 886.6 & 651, 6 & 1,513.3 \\
\hline
\end{tabular}
-/Figures for 1972 -83 were obtained from the National Science Foundation (1975-85). The 1978 figures are MSF estimates. Figures for other years were estimated by the comilttee. Itens may not sum to totals due to rounding.
b/1972 dollars were obtained by using the Implicit GWP Price Deflator (U.S. Bureau of the Census --see Appendix Table B7). Items may not sum to lotals due to rounding,

C/computed by the formuld \(1 / 4\left(R_{t}+2 R_{t-1}+R_{t-2}\right)\), where \(R=\) total blomedical science \(R\) and \(D\) expenditures (1972 dollars).

APPENDIX TABLE BIO Average Biomedical Science R and D Expenditures per School in Colleges and Universities, by Control of Institution, 1972-83a/ (1972 \$, thousands)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{3}{|l|}{Average \(R\) and \(D\) Expenditures} & \multicolumn{3}{|l|}{Number of Schools Reporting/} \\
\hline & Total & Public & Private & Total & Public & Private \\
\hline 1972 & 1,865 & 1,793 & 1,960 & 591 & 335 & 256 \\
\hline 1973 & 2,004 & 1,950 & 2,074 & 591 & 335 & 256 \\
\hline 1974 & 1,858 & 1,774 & 1,966 & 596 & 336 & 260 \\
\hline 1975 & 2,225 & 2,009 & 2,552 & 536 & 323 & 213 \\
\hline 1976 & 2,357 & 2,175 & 2,633 & 535 & 322 & 213 \\
\hline 1977 & 2,368 & 2,197 & 2,625 & 536 & 322 & 214 \\
\hline 1978 & 2,386 & 2,301 & 2,507 & 562 & 331 & 231 \\
\hline 1979 & 2,383 & 2,252 & 2,569 & 565 & 332 & 233 \\
\hline 1980 & 2,527 & 2,420 & 2,681 & 563 & 332 & 231 \\
\hline 1981 & 2,640 & 2,566 & 2,746 & 563 & 332 & 231 \\
\hline 1982 & 2,689 & 2,606 & 2,807 & 563 & 332 & 231 \\
\hline 1983 & 2,737 & 2,679 & 2,821 & 562 & 331 & 231 \\
\hline
\end{tabular}

2/See Appendix Table B9 for supporting data.
\(\mathrm{b} /\) From the National Science Foundation. For 1978, the number of doctorate-granting institutions was obtained from NSF; the number of master's-granting institutions was estimated by the committee.

APPENDIX TABLE BII Indirect Costs of NIH-Sponsored Research Grants at Institutions of Higher Education, 1970-83a/
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{All Institutions of Higher Ed.} & \multicolumn{2}{|l|}{Public Schools} & \multicolumn{2}{|l|}{Private Schools} \\
\hline \begin{tabular}{l}
Fiscal \\
Year
\end{tabular} & \% of Direct Costs & \% of Total Costs & \(\%\) of Direct Costs & \begin{tabular}{l}
\(\%\) of Total \\
Costs
\end{tabular} & \% of Direct Costs & \(\%\) of Total Costs \\
\hline 1970 & 25.7 & 20.5 & 26.6 & 21.0 & 24.9 & 19.9 \\
\hline 1971 & 27.2 & 21.4 & 28.2 & 22.0 & 26.3 & 20.8 \\
\hline 1972 & 28.7 & 22.3 & 28.9 & 22.4 & 28.5 & 22.2 \\
\hline 1973 & 30.0 & 23.1 & 29.6 & 22.8 & 30.4 & 23.3 \\
\hline 1974 & 31.8 & 24.1 & 30.4 & 23.3 & 33.2 & 24.9 \\
\hline 1975 & 32.4 & 24.5 & 30.2 & 23.2 & 34.8 & 25.8 \\
\hline 1976 & 34.6 & 25.7 & 31.7 & 24.1 & 37.6 & 27.4 \\
\hline 1977 & 35.0 & 25.9 & 31.4 & 23.9 & 38.9 & 28.0 \\
\hline 1978 & 36.0 & 26.5 & 31.7 & 24.1 & 40.7 & 28.9 \\
\hline 1979 & 37.5 & 27.3 & 32.9 & 24.8 & 42.7 & 29.9 \\
\hline 1980 & 39.2 & 28.2 & 33.3 & 25.0 & 46.0 & 31.5 \\
\hline 1981 & 40.4 & 28.8 & 34.1 & 25.4 & 47.6 & 32.2 \\
\hline 1982 & 41.0 & 29.1 & 34.4 & 25.6 & 48.8 & 32.8 \\
\hline 1983 & 43.5 & 30.3 & 36.1 & 26.5 & 51.8 & 34.1 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Average Annual \\
Growth Rate
\end{tabular}} \\
\hline 1970-83 & 4.1\% & 3.1\% & 2.4\% & 1.8\% & 5.8\% & 4.2\% \\
\hline
\end{tabular}
a/ From NiH (1966-84).

APPENDIX TABLE B12 Ph.D.s Academically Employed in the Biomedical Sciences, by Employment Status and Type of Institution, 1973-83á
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multirow[b]{2}{*}{Employment Status} & \multicolumn{3}{|l|}{Type of Institution} \\
\hline & & Total & 4-Year & 2-Year \\
\hline \multirow[t]{3}{*}{1973} & Total & 25,471 & 24,960 & 511 \\
\hline & Full-Time & 24,724 & 24,241 & 483 \\
\hline & Part-Time & 747 & 710 & 28 \\
\hline \multirow[t]{3}{*}{1975} & Total & 28,332 & 27,7: & 623 \\
\hline & Full-Time & 27,487 & 26, & 568 \\
\hline & Part-Time & 845 & is & 55 \\
\hline \multirow[t]{3}{*}{1977} & Total & 30,384 & 29,604 & 780 \\
\hline & Full-Time & 29,473 & 28,768 & 705 \\
\hline & Part-Time & 911 & 836 & 75 \\
\hline \multirow[t]{3}{*}{1979} & Total & 33,566 & 32,744 & 822 \\
\hline & Full-Time & 32,550 & 31,802 & 749 \\
\hline & Part-Time & 1,015 & 942 & 73 \\
\hline \multirow[t]{3}{*}{1981} & Total & 36,482 & & 838 \\
\hline & Full-Time & 35,462 & 34,701 & 761 \\
\hline & Part-Time & 1,020 & 943 & 77 \\
\hline \multirow[t]{3}{*}{1983} & Total & 36,963 & 35,973 & 990 \\
\hline & Full-Time & 35,781 & 34,884 & 897 \\
\hline & Part-Time & 1,182 & 1,089 & 93 \\
\hline Average Annual & Total & 3.8 & 3.7 & 6.8 \\
\hline Growth Rate & Full-Time & 3.8 & 3.7 & 6.4 \\
\hline from 1973-83 & Part-Time & 4.7 & 4.2 & 12.8 \\
\hline
\end{tabular}
a/Based on the most recent data available from the National Research Council (1973-84). Foreign nationals who received doctorates from U.S. institutions are included. Individuals on postdoctoral appointments are excluded.

APPENEIK TABLE BI3 Faculty Attrition Rates at U.S. Medical Schorls, by Department and Degree Type, 1970-81a/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Fiscal } \\
& \text { Year } \\
& \hline
\end{aligned}
\]} & \multicolumn{4}{|l|}{All Departments} & \multicolumn{4}{|l|}{Clinical Departments} & \multicolumn{4}{|l|}{Basic Science Departments} \\
\hline & Total & M.D.S & Ph.D.S & Other & Total & H.D.S & Ph.D.s & Other & Total & M.0.5 & Ph.0.5 & Other \\
\hline 1970 & 6.3 & 6.5 & 4.6 & 9.6 & 7.1 & 6.8 & 7.3 & 9.7 & 4.8 & 5.1 & 3.3 & 4.3 \\
\hline 1971 & 6.5 & 6.9 & 4.5 & 8.8 & 1.3 & 7.2 & 6.4 & 9.7 & 4.7 & 5.3 & 3.6 & 7.6 \\
\hline 1972 & 7.8 & 7.7 & 6.3 & 12.2 & 8.2 & 7.9 & 7.1 & 11.8 & 6.8 & 6.3 & 5.5 & 12.7 \\
\hline 1973 & 7.2 & 7.0 & 5.2 & 13.4 & 7.8 & 1.1 & 6.9 & 15.3 & 5.8 & 6.2 & 4.3 & 10.7 \\
\hline 1974 & 6.5 & 6.4 & 4.9 & 11.1 & 1.0 & 6.6 & 6.1 & 10.9 & 5.3 & 5.3 & 3.9 & 11.4 \\
\hline 1975 & 6.7 & 6.5 & 5.4 & 11.6 & 7.1 & 6.7 & 6.8 & 10.8 & 5.9 & 5.4 & 4.6 & 12.7 \\
\hline 1976 & 7.5 & 7.4 & 5.8 & 13.1 & 8.2 & 7.7 & 7.5 & 13.7 & 6.0 & 5.6 & 4.9 & 12.2 \\
\hline 1977 & 7.7 & 7.7 & 6.0 & 12.0 & 8.2 & 8.0 & 7.5 & 11.6 & 6.3 & 5.9 & 5.2 & 12.4 \\
\hline 1978 & 6.5 & 6.6 & 4.9 & 11.0 & 7.1 & 6.8 & 6.5 & 11.3 & 5.2 & 5.1 & 4.1 & 10.4 \\
\hline 1979 & 6.3 & 6.3 & 5.1 & 10.8 & 6.9 & 6.6 & 7.1 & 10.3 & 5.0 & 4.1 & 4.0 & 11.4 \\
\hline 1980 & 5.9 & 6.0 & 4.8 & 8.6 & 6.4 & 6.2 & 5.9 & 9.0 & 4.7 & 4.1 & 4.2 & 8.1 \\
\hline 1981 & 5.8 & 5.8 & 4.7 & 9.8 & 6.1 & 6.0 & 5.6 & 8.6 & 5.1 & 4.3 & 4.2 & 11.5 \\
\hline Average 1970-81 & 6.7 & 6.7 & 5.2 & 11.0 & \(i .3\) & 7.0 & 6.8 & 11.0 & 5.5 & 5.2 & 4.3 & 10.4 \\
\hline
\end{tabular}
- / From Sherman and Boorden (1982). Based on the Medical School Faculty Roster. Figures represent percent of full-time faculty leaving each year for retirement, death, and other reasons.

APPENDIX TABLE B14 Postdoctoral Ressarch Training of New Faculty Hires in U.S. Medical Schools, by
Department and Degree Type, 1970-81al
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fiscal Year} & \multicolumn{2}{|l|}{All Departments} & \multicolumn{2}{|l|}{Clinical Departments} & \multicolumn{2}{|l|}{Basic Science Departments} \\
\hline & M.0. 5 & Ph, D, 5 & M, D, S & Ph, D. 5 & M, D.S & Ph, D. 5 \\
\hline 1970 & 28.2 & 29.6 & 27.7 & 20.1 & 31.7 & 39.2 \\
\hline . 1971 & 26.1 & 32.5 & 25.0 & & & \\
\hline 1972 & 25,8 & 39.3 & 24.6 & 22.5 & 35,6
36,6 & 43.4
49.4 \\
\hline 1973
1974 & 22.9 & 41.0 & 22.7 & 26.9 & 36,1
25.1 & 49,4
54.1 \\
\hline 1974
1975 & 25,0
22.5 & 44.2 & 24.3 & 31.0 & 33.9 & 54, 3 \\
\hline 197 & 22.5 & 41.7 & 21.7 & 29.9 & 31.1 & 55.9 \\
\hline 1976 & 23.4 & 49.9 & 22.8 & 37.9 & & \\
\hline 1977 & 23,7 & 50.7 & 22.7 & 38.3 & 30.4
37.4 & 62.2
64.5 \\
\hline 1978
1979 & 23.5 & 56.0 & 23.2 & 43.8 & 28.4 & 72.7 \\
\hline 1979
1980 & 20,0
22.2 & 55.8
55.3 & 19.4 & 41.4 & 29.4 & 72.2 \\
\hline 1981 & 22.2
25,3 & 55.3 & 21.6 & 38.2 & 30.4 & 71.8 \\
\hline 198 & 25.3 & 55.7 & 24.0 & 42.0 & 42.4 & 71,6 \\
\hline Average 1970-81 & 24.0 & 46.0 & 23.4 & 33.4 & 32.7 & 59.5 \\
\hline
\end{tabular}
-/ From Sherman and Bowden (1982), Based on Medical School Faculty Roster. Figures represent percent of new full-time faculty with postioctoral research training.

APPENDIX TABLE BIS Graduate School Attrition Rates in the Biomedical Sciences, 1950-71
\begin{tabular}{|c|c|c|c|c|}
\hline Fiscal Year of Graduate School Entry & First-Year Graduate Enrollment in the Biomed. Sci.a/ & Number of FY 1958-84 Biomedical Sci. Ph.D.S Entering Grad. Schoolb/ & Ph.D. Completion Rate (\%) 5 & Graduate School Attrition Rate \((\%)[/\) \\
\hline 1960 & 5,370 & 1,932 & 36.0 & 64.0 \\
\hline 1961 & 6,025 & 2,178 & 36.1 & 63.9 \\
\hline 1962 & 6,642 & 2,369 & 35.7 & 64.3 \\
\hline 1963 & 7,137 & 2,548 & 35.7 & 64.3 \\
\hline 1964 & 8,542 & 3,047 & 35.7 & 64.3 \\
\hline 1965 & 10,430 & 3,400 & 32.6 & \\
\hline 1966 & 12,034 & 3,746 & 31.1 & \\
\hline 1967 & 12,511 & 3,695 & 29.5 & \\
\hline 1968 & 13,301 & 3,484 & 26.2 & \\
\hline 1969 & 13,343 & 3,335 & 25.0 & \\
\hline 1970 & 14,835 & 3,428 & 23.1 & \\
\hline 1971 & 15,845 & 3,478 & 22.0 & \\
\hline Pre-1960 & & 12,986 & & \\
\hline Post-1971 & & 24,319 & & \\
\hline
\end{tabular}
a/From the U.S. Department of Education (1959-79).
b/From the National Research Council (1958-85).
C/The Ph.D. completion rate represents the percentage of first-year graduate students in a given year who earned a Ph.D. between 1958 and 1984 (column 2/column I). The attrition rate is obtained by subtracting the Ph.D. completion rate for a given year from 100.0\%. The rates for 1960-64 are relatively constant, indicating that most individuals entering graduate school during that period had either received a Ph.D. or dropped out of graduate school by 1984. For 1965-71, however, the Ph.D. completion rates decline with each year. The attrition rates for these years undoubtedly include students who are still enrolled in graduate school but who had not earned a Ph.D. by 1984, as well as those who had actually dropped out of graduate school. The Ph.D. completion rates will most likely increase and the attrition rates decrease once 1985 Ph.0.5 are added to the calculations, and should continue to do so with the inclusion of each additional year of Ph.D.s. For this reason, we have not caiculated the attrition rates after 1964.

APPENDIX TABLE 516 Percerit of the Postdoctoral Population in the Biomedical Sciences Who ?idd Earned Their Doctorates More Than 2, 3, or 4 Years Earlier, 1973-83a/
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Fiscal Year} & \multirow[b]{3}{*}{Total Postdocs} & \multicolumn{6}{|l|}{Number of Years Since Ph.D.} \\
\hline & & \multicolumn{2}{|l|}{\(\geq 2\) Years} & \multicolumn{2}{|l|}{\(\geq 3\) Years} & \multicolumn{2}{|l|}{\(\geq 4\) Years} \\
\hline & & N & \% & N & \% & N & \% \\
\hline 1973 & 3,607 & 1,123 & 31.1 & 577 & 16.0 & 343 & 9.5 \\
\hline 1975 & 5,369 & 2,239 & 41.7 & 1,334 & 24.8 & 843 & 15.7 \\
\hline 1977 & 6,312 & 2,782 & 44.1 & 1,715 & 27.2 & 1,051 & 16.7 \\
\hline 1979 & 7,268 & 3,530 & 48.6 & 2,345 & 32.3 & 1,532 & 21.1 \\
\hline 1981 & 8,026 & 3,695 & 46.0 & 2,369 & 29.5 & 1,544 & 19.2 \\
\hline 1983 & 7,827 & 3,503 & 44.8 & 2,309 & 29.5 & 1,432 & 18.3 \\
\hline
\end{tabular}
a/From the National Research Council (1973-84).

APPENDIX TABLE Bl7 Projected Combined Death and Retirement Rates as Percent of Total.Faculty, by Broad Field of Science and Engineering, 1976-2000a/
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Mathematics & Physical Sciences & Engineering & Life Sciences & Sciences \\
\hline 1976 & 1.06 & 1.11 & 1.07 & 1.27 & 1.20 \\
\hline 1977 & 0.94 & 1.41 & 0.79 & 1.28 & 1.21 \\
\hline 1978 & 0.93 & 1.22 & 0.61 & 1.35 & 1.26 \\
\hline 1979 & 0.71 & 1.13 & 0.61 & 1.21 & 1.23 \\
\hline 1980 & 0.69 & 1.05 & 0.72 & 1.22 & 1.34 \\
\hline 1981 & 0.67 & 1.03 & 0.80 & 1.21 & 1.31 \\
\hline 1982 & 0.76 & 1.16 & 0.80 & 1.22 & 1.24 \\
\hline 1983 & 0.81 & 1.30 & 0.96 & 1.40 & 1.48 \\
\hline 1984 & 1.12 & 1.38 & 0.98 & 1.44 & 1.64 \\
\hline 1985 & 1.04 & 1.49 & 1.29 & 1.44 & 1.73 \\
\hline 1986 & 0.98 & 1.49 & 1.40 & 1.74 & 1.97 \\
\hline 1987 & 1.02 & 1.88 & 1.48 & 1.68 & 2.21 \\
\hline 1988 & 1.57 & 2.15 & 1.55 & 2.08 & 2.19 \\
\hline 1989 & 1.45 & 1.97 & 1.67 & 1.97 & 2.30 \\
\hline 1990 & 1.43 & 2.14 & 1.90 & 1.98 & 2.45 \\
\hline 1991 & 1.58 & 1.96 & 1.78 & 2.18 & 2.71 \\
\hline 1992 & 1.53 & 2.24 & 2.28 & 2.05 & 2.73 \\
\hline 1993 & 1.96 & 2.50 & 2.13 & 2.23 & 2.80 \\
\hline 1994 & 2.06 & 2.46 & 2.05 & 2.52 & 2.98 \\
\hline 1995 & 1.98 & 2.53 & 2.33 & 2.45 & 2.90 \\
\hline 1996 & 2.07 & & 2.22 & 2.47 & 3.00 \\
\hline 1997 & 2.32 & 2.58 & 2.34 & 2.70 & 3.24 \\
\hline 1998 & 2.44 & 2.98 & 2.63 & 2.70 & 3.08 \\
\hline 1999 & 2.57 & 2.95 & 2.54 & 2.60 & 3.16 \\
\hline 2000 & 2.84 & 3.03 & 2.50 & 2.55 & 3.12 \\
\hline
\end{tabular}
a/From special tabulations prepared by Charlotte Kuh, based on the Radner-Kuh projection model and data from the National Research Council (1973-84).


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TOTN & 30,394 & 100,0 & \multicolumn{3}{|r|}{33,566 100,0} & \multicolumn{3}{|r|}{36, 1821 100.0} & \multicolumn{3}{|r|}{36,963 100.0} & \multicolumn{3}{|r|}{38,500 100,0} & \multicolumn{2}{|l|}{\(39,500100.0\)} & \multicolumn{2}{|l|}{41,000 100,0} & \multicolumn{2}{|l|}{42.500100 .0} \\
\hline 45 and undert & 19,516 & 64.2 & - & 21,698 & 54.6 & - & 22,837 & 62.6 & - & 22,631 & 51.2 & - & 23,145 & 60.1 & 23,195 & 58.7 & 23,960 & 58.0 & 21,395 & 57.4 \\
\hline 46.19 & 1,514 & 5.0 & & 1,696 & 5.1 & & 1,828 & 5.0 & 4.1 & 1,937 & 5.2 & 2.0 & 1,925 & 5.0 & 1,975 & 5.0 & 2,050 & 5.0 & 2,125 & 5.0 \\
\hline 48-19 & 1,667 & 5.5 & 3.8 & 1,541 & 4.6 & 3.8 & 1,74 & 4.8 & & 1,753 & 4.7 & 2.0 & 1,900 & 4.9 & 1,890 & 1.8 & 1,940 & 4.1 & 2,010 & 8.7 \\
\hline 50.51 & 1,483 & 4.9 & 0.8 & 1,604 & 4.8 & 0.3 & 1,482 & 4.1 & 2.8 & 1,775 & 4.8 & 2.0 & 1,720 & 4.5 & 1,860 & 4.1 & 1,850 & 4.5 & 1,900 & 4.5 \\
\hline 52.53 & 1,440 & 4.1 & 8.2 & 1,471 & 4.4 & & 1,599 & 4.4 & 9.4 & 1,441 & 3.9 & 3.0 & 1,740 & 4.5 & 1,690 & 4.3 & 1,820 & 4.4 & 1,810 & 4.3 \\
\hline 54.95 & 1,052 & 3.5 & 4.7 & 1,322 & 3.9 & - & 1,581 & 4.3 & 5.9 & 1,449 & 3.9 & 3.0 & 1,400 & 3.6 & 1,690 & 4.3 & 1,640 & 4.0 & 1,710 & 4.2 \\
\hline 56-57 & 872 & 2.9 & 5.5 & 1,003 & 3.0 & - & 1,362 & 3.1 & 2.6 & 1,487 & 4.0 & 3.0 & 1,110 & 3.7 & 1,360 & 3.4 & 1,640 & 4,0 & 1,590 & 3.1 \\
\hline 58.59 & 142 & 2.4 & 1.7 & 824 & 2.5 & 2.1 & 1,068 & 2.9 & 14.2 & 1,321 & 3.6 & 4.0 & 1,440 & 3.7 & 1,370 & 3.5 & 1,320 & 3.2 & 1,590 & 3.1 \\
\hline 60-61 & 54 & 2.0 & 7.1 & 695 & 2.0 & - & 807 & 2.2 & \(\cdots\) & 916 & 2.5 & 5.0 & 1,20 & 3.3 & 1,380 & 3.5 & 1,350 & 3.2 & 1,270 & 3.0 \\
\hline 62.63 & 522 & 1.7 & - & 548 & 1.6 & 4.0 & 1833 & 2.3 & 3.1 & 817 & 2.2 & 10.0 & 880 & 2.3 & 1,210 & 3.1 & 1,310 & 3.2 & 1,250 & 2.9 \\
\hline 64-65 & 528 & 1.7 & 36.7 & 549 & 1.6 & 14.9 & 526 & 1.4 & 30.0 & 549 & 1.5 & 20.0 & 440 & 1.9 & 780 & 2.0 & 1,090 & 2.1 & 1,180 & 2.8 \\
\hline 66-67 & 218 & 0.1 & 37.2 & 334 & 1.0 & 32.0 & 467 & 1.3 & 37.9 & 368 & 1.0 & 35.0 & 440 & 1.1 & 590 & 1.5 & 620 & 1.5 & 870 & 2.0 \\
\hline 68-69 & 111 & 0.5 & - & 137 & 0.4 & 15.8 & 221 & 0.6 & 1.9 & 290 & 0.8 & 10.0 & 240 & 0.6 & 290 & 0.7 & 380 & 1.0 & 100 & 0.9 \\
\hline \(70+\) & 86 & 0.3 & * & 145 & 0.4 & - & 114 & 0.3 & & 209 & 0.6 & - & 260 & 0.7 & 220 & 0.6 & 260 & 0.6 & 340 & 0.8 \\
\hline Unknown & 9 & - & - & 9 & - & - & 2 & - & - & 14 & - & - & & & & & & & & \\
\hline
\end{tabular}

2/The dats for \(1977-83\) mere obtinned froa the hational Researen Council (1973-84). Projections wre computed by the cormittee.

APPENDIX C
Behavioral Sciences Data
TABLE Cl Behavioral Science Enrollments in Colleges and Universities, by Control of Institution, 1960-84 ..... 205C2 Graduate Enrollment in Clinical Psychology,Nonclinical Psychology, and Other BehavioralSciences, and Ratio of Clinical PsychologyPh.D.s to Total Psychology Ph.D.s, by Controlof Institution, 1960-84206
C3C4
ClO Behavioral Science Ph.D. Degrees Awarded in Colleges and Universities, by Control of Institution, 1961-84

\section*{APPENDIX C (cont'd.)}

Behavioral Sciences Data
TABLE Cll Behavioral Science Postdoctoral Appointments, 1962-83 ..... 216
Cl 2 Ph.D.s Employed in All Behavioral Science Fields, 1962-83 ..... 218
Cl3 Ph.D.s Employed in Clinical Psychoixy, 1973-83 ..... 219
Cl4 Ph.D.s Employed in Nonclinical Psychology, 1973-83 ..... 220
Cl5 Ph.D.s Employed in Other Behavioral Sciences, 1973-83 ..... 221
Cl6 Behavioral Sciences Faculty/Student Ratios, 1962-81 ..... 222
Cl7 Ph.D.s Academically Employed in the Behavioral Sciences, by Employment Status and Type of Institution, 1973-83 ..... 223
Cl 8 Behavioral Science \(R\) and D Expenditures in Colleges and Universities, by Control of Institution, 1960-83 (\$ millions) ..... 224
Cl9 Average Behavioral Science R and D Expendituresper School in Colleges and Universities, byControl of Institution, 1972-83 (1972 \$,thousands)225
C20 Psychology R and D Expenditures in Colleges and Universities, by Control of Institution, 1960-83 ..... 226
C21 Sociology \(R\) and \(D\) Expenditures in Colleges and Universities, by Control of Institution, 1960-83 ..... 227
C22 Graduate Enrollment in the Behavioral Sciences, by Sex, 1967-84 (percent of field total) ..... 228
C23 Graduate School Attrition Rates in the Behavioral Sciences, 1960-71 ..... 229
C24 Actual and Projected Age Distribution of Academically Employed Behavioral Science Ph.D.s ..... 230

APPEMOIX TABLE Cl Behavorial Science Enroliments in Colleges and Universities, by Control of Institution,
\(1950-84 a /\),
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{3}{|l|}{Total Undergraduate and Graduate Enrollment} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Estimated \\
Undergraduate Enrollment \({ }^{\text {b/ }}\)
\end{tabular}} & \multicolumn{3}{|l|}{Graduate \({ }^{\text {c/ }}\)} \\
\hline & Total & Public & Private & Total & Public & Private & Total & Public & Private \\
\hline 1960 & 172,976 & n/a & n/a & 160,228 & n/d & n/8 & 12,748 & n/a & n/a \\
\hline 1961 & 194,799 & n/a & n/a & 179,839 & n/a & n/a & 14,960 & n/a & n/a \\
\hline 1962 & 225,475 & n/a & n/8 & 210,099 & n/a & n/d & 15,376 & n/a & n/a \\
\hline 1963 & 257,638 & n/a & n/a & 241,032 & n/a & n/a & 16,606 & n/a & n/8 \\
\hline 1964 & 304,375 & n/a & n/a & 285,593 & n/a & n/a & 18,782 & n/a & n/a \\
\hline 1965 & 316,575 & \(n / \mathrm{a}\) & n/a & 295,626 & n/a & n/a & 20,949 & n/a & n/a \\
\hline 1966 & 382,904 & n/a & n/8 & 358,940 & n/a & n/a & 24,064 & n/a & n/8 \\
\hline 1967 & 431,820 & n/a & n/8 & 406,763 & n/a & n/a & 25,057 & n/d & \(n / 8\) \\
\hline 1968 & 495,958 & n/a & n/a & 466,075 & n/a & n/a & 29,883 & n/a & n/a \\
\hline 1969 & 565,817 & n/a & n/a & 531,814 & n/a & n/a & 34,003 & n/a & n/a \\
\hline 1970 & 637,063 & n/a & n/8 & 600,555 & n/a & n/a & 36,508 & \(n / \mathrm{a}\) & n/a \\
\hline 1971 & 706,924
750,453 & 563, \({ }^{\text {n/a }}\) / & 186, \({ }^{\text {n/a }}\) & 666,568 & 496,429 & 170.139 & 40,356 & n/8 & n/a \\
\hline 1973 & 743,829 & 561,782 & 186.731 & 705,746 & 533,011 & 172,735 & 44,707 & 30,711 & 13,996 \\
\hline 1974 & 724,277 & 550,163 & 182,047 & 695,613
672,565 & 528,419
514,787 & 167,194 & 48,216 & 33,363 & 14,853 \\
\hline 1975 & 723,479 & 554,594 & 168,885 & 668,096 & 517,270 & 150,826 & 55,383 & 35,376
37,324 & 16,336
18,059 \\
\hline 1976 & 730,900 & 564,051 & 166.849 & 671,844 & 524,078 & 147,756 & 59,056 & 39,973 & 19,083 \\
\hline 1977 & 692,920 & 534,577 & 158,343 & 634,531 & 495,901 & 138,730 & 58,289 & 38,676 & 19,613 \\
\hline 1978 & 684,149 & 525,988 & 158,161 & 620,369 & 482,835 & 137,534 & 63,780 & 43,153 & 20,627 \\
\hline 1979 & 650,543 & 497,901 & 152,642 & 586,742 & 455,191 & 131.551 & 63,801 & 42,710 & 21,091 \\
\hline 1980 & 644,803 & 492,677 & 152,126 & 580,983 & 450,413 & 130,570 & 63,820 & 42,264 & 21,556 \\
\hline 1981 & 647,331 & 494,346 & 152,985 & 582,551 & 452,353 & 130,198 & 64,780 & 41,993 & 22,787 \\
\hline 1982 & n/8 & n/a & n/a & n/a & n/a & n/a & 64,331 & 41,701 & 22,630 \\
\hline 1983 & n/8 & n/a & n/a & n/a & n/d & n/d & 63,108 & 40,965 & 22,143 \\
\hline 1984 & n/a & n/8 & n/a & n/a & n/a & n/8 & 63,811 & 41,501 & 22,310 \\
\hline
\end{tabular}
a/Behavioral sciences include psychology, sociology, anthropology, and speech pathology/audiology. Figures are higher than those presented in the 1983 Report because speech pathology/dudiology is now included in the taxonomy.
b/Sum of estimated undergraduate enrollments in prychology, soclology, anthropology, and speech pathology/audiology. See Appendix Tables C4-6 and C8 for supporting data.
c/Figures for 1960-77 were obtalned from the U.S. Department of Education (1959-79). Figures for 1978-84 were obtalned from the National Science Foundation (1973-85a) except for the 1979 figure, which was interpolated. Due to differences in taxonomy, MSF numbers for 1978-84 may be slightly higher than numbers that would have been obtained from the Department of Education had data been collected for those years. For the year 1977, MSF reported 62,699 graduate students enrolled in the behavioral sciences; in comparison, the Department of Education reported a sonewhat lower figure of 58,289 (as shown in this table).

APPEHDIX TaBLE C2 Graduate Enrollment in Clinical Psychology, Nonclinical Psychology, and Other Belavorial Sciences, and Ratio of Clinical Psychology Ph.D.s to Total Psychology Ph,D.S, by Control of Institution, 1960-84

a/figures for \(1960-77\) were obtained from the U.S. Department of Education ! \(1959-79\) ). Figures for 1978.84 were ut " ines \(\pi\) the National Science Foundation (1973-85a) except for the 1979 figure, which was interpolated. YSF numbers for \(1978-84\) may be sight):
.lan numbers that would have been obtained from the Department of Education had data been collected for those years.
 graduate enrollment in year \(1 ; C P_{i+2}\) " clinical psychology Ph. 0 . degrees awarded in year \(1+2 ; \mathbb{T}_{i+2}=\) total psychology Ph. \(\Omega\). degrees awarded in year \(1+2 ; E_{1}=\) psychology graduate enrollment in year 1 . Public and private estimates were based on enrollment ratios. Nonclinical psychology graduate enrollment represents the difference between total psyciliology and clinical psychology graduate enrol loments. The figures for 1983 are preliminary estimates. See Appendix Tables CA and C1O for supporting data.
c/ Includes sociology, anthropology, and speech pathology/audiology.
d/ See Appendix Table Clio for number of Ph.D.s.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{Total First-Year Graduate Enrollment} & \multicolumn{6}{|l|}{First-Year Full-Tine Graduate Enrol Iment in Doctorate-Granting Institutions} \\
\hline Fiscal Year & \[
\begin{aligned}
& \text { All } \\
& \text { Behav, Sci. } \\
& \hline
\end{aligned}
\] & Psych. & Sociol. & Anthro, & Scchisith, Audiology & All Bchav, Sci. & Psych. & Sociol. & Anthro. & \begin{tabular}{l}
Sociol/ \\
Anthro.
\end{tabular} & Snch, Path. Audiology \\
\hline 1950 & 6,188 & 4,366 & 1,486 & 336 & n/d & \(n / 3\) & n/d & n/a & n/d & n/d & \(n / 8\) \\
\hline 1961 & 1,132 & 5,470 & 1,805 & 457 & n/d & n/d & n/d & \(\pi / d\) & n/a & n/a & \(0 / 1\) \\
\hline 1962 & 8,038 & 5,655 & 1,861 & 522 & \(n / d\) & n/a & n/d & \(n / 8\) & n/d & n/d & \(\pi / 10\) \\
\hline 1963 & 8,739 & 6,169 & 2,020 & 550 & \(n / 2\) & n/d & \(n / d\) & \(\pi / \mathrm{d}\) & \(\mathrm{m} / \mathrm{d}\) & n/d & \(n / 2\) \\
\hline 1964 & 9,288 & 5,928 & 2,625 & 135 & \(n / 3\) & \(n / 8\) & \(n / 8\) & M/d & n/d & n/d & n/d \\
\hline 1965 & 11,832 & 7,673 & 3,137 & 1,022 & \(n / 3\) & \(n / d\) & n/d & \(\pi / 8\) & n/d & n/d & n/d \\
\hline 1966 & 13,659 & 8,765 & 3,645 & 1,249 & \(n / d\) & N/d & n/d & \(n / 2\) & n/d & n/d & n/d \\
\hline 1967 & 13,659 & 8,459 & 3,793 & 1,407 & \(n / d\) & n/d & n/d & n/d & n/d & n/d & \(n / 2\) \\
\hline 1968 & 15,966 & 10,190 & 4,290 & 1,486 & \(n / d\) & n/d & n/d & \(n / 8\) & n/a & n/d & n/d \\
\hline 1969 & 16,831 & 10,645 & 4,584 & 1,602 & n/d & \(n / d\) & n/a & n/a & n/d & \(n / d\) & n/d \\
\hline 1970 & 19,501 & 12,200 & 5,456 & 1,845 & n/d & m/d & n/d & \(n / 0\) & n/d & \(n / 8\) & n/d \\
\hline 1971 & 22,709 & 14,262 & 6,033 & 2,414 & n/d & \(n / d\) & n/a & n/d & n/d & \(n / d\) & n/d \\
\hline 1972 & 24,607 & 14,754 & 5,484 & 2,366 & 2,003 & n/d & m/d & \(\pi / 8\) & n/d & n/3 & n/d \\
\hline 1973 & 26,269 & 15,678 & 5,642 & 2,525 & 2,424 & n/d & m/a & n/d & \(n / d\) & n/d & n/d \\
\hline 1974 & 27,636 & 16,219 & 5,404 & 2,515 & 3,498 & n/a & n/d & n/d & n/d & n/a & n/d \\
\hline 1975 & 29,376 & 17,270 & 5,1.57 & 2,554 & 4,295 & 12,028 & 5,872 & 1,930 & 1,368 & 338 & 2,520 \\
\hline 1976 & 31,545 & 38,510 & 5,01? & 2,748 & 5,275 & 11,821 & 5,737 & 1,85? & 1,276 & 398 & 2,558 \\
\hline 1977 & 29,778 & 17,565 & 4,461 & 2,525 & 5,221 & 11,606 & 5,983 & 1,706 & 1,335 & 259 & 2,323 \\
\hline 1978 & m/d & n/d & n/a & n/d & \(n / \mathrm{d}\) & 11,695 & 6,063 & 1,678 & 1,326 & 273 & 2,355 \\
\hline 1979 & n/a & n/d & \(n / 2\) & n/d & \(n / d\) & 10,390 & 5,569 & 1,371 & 1,141 & 218 & 2,001 \\
\hline 1980 & n/d & n/d & \(n / 2\) & n/d & n/d & 9,938 & 5,468 & 1,28\% & 1,110 & 227 & 1,847 \\
\hline 1981 & n/d & n/a & & n/d & n/d & 10,227 & 5,697 & 1,314 & 966 & 203 & 2,047 \\
\hline 1982 & n/d & n/d & n/d & n/a & \(n / d\) & 9,846 & 5,564 & 1,229 & 978 & 153 & 1,97? \\
\hline 1983 & n/d & n/d & n/d & n/d & m/a & 9,650 & 5,474 & 1,130 & 896 & 200 & 1,950 \\
\hline 1984 & n/d & n/a & \(n / \mathrm{d}\) & n/d & n/a & 9,406 & 5,392 & 1,129 & R36 & 150 & 1,890 \\
\hline
\end{tabular}
a/Figures are higher than those presented in the lge3 Report because speech pathology/audiology is now included in the taxonony. b/From the U.S. Department of Education (1959.79).

C/From the National Science Foundation (1973-R5a),

APPEMOIX TABLE CS Psychology Enrollments In Colleges and Unlversilles, D,A, Degrees Awarded In Psychology, and Ratio of Psychology D.A,s to Total B,A,S, by Control of Institution, 1960.84
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { fiscal } \\
& \text { Year } \\
& \hline
\end{aligned}
\]} & \multicolumn{9}{|l|}{Enroliments} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{B.A. Degrees Arardeld \(/\)}} & \multirow[b]{3}{*}{\begin{tabular}{l}
Aatlo of Psych, B.A.S to Total B.A.s \(\frac{d}{}\) \\
Totol
\end{tabular}} \\
\hline & \multicolumn{3}{|l|}{Total Undergraduate and Graduate Enrol Iment} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Estlmated \\
Undergraduate Enrollment
\end{tabular}} & \multicolumn{3}{|l|}{Graduate \({ }^{\text {b/ }}\)} & & & & \\
\hline & Total & Public & Prlyate & Total & Public & Private & Total & Public & Private & Total & Public & Private & \\
\hline 1960 & 92,894 & \(n / \mathrm{d}\) & \(n / 8\) & 83,937 & n/4 & n/d & 8,957 & 4,639 & 4,318 & 8,111 & n/d & n/d & n/d \\
\hline 1961 & 105,036 & n/a & n/a & 95,359 & n/d & n/d & 10,671 & 5,580 & 5,097 & 8,524 & n/d & n/d & 0.023] \\
\hline 1962 & 121,373 & n/d & n/d & 110,622 & n/a & n/d & 10,751 & 5,698 & 5,053 & 9,638 & n/d & n/d & 0.0252 \\
\hline 1963 & 134,461 & n/d & n/d & 123,117 & n/d & n/d & 11,344 & 6,363 & 4,981 & 11,062 & n/a & \(n / d\) & 0.0270 \\
\hline 1954 & 156,762 & n/d & n/d & 144,135 & n/d & \(\mathrm{n} / \mathrm{d}\) & 12,621 & \(\mathrm{n} / \mathrm{d}\) & \(\pi / 8\) & 13,359 & \(\pi / 8\) & \(n / 8\) & 0.0290 \\
\hline 1965 & 161,249 & n/d & \(n / 8\) & 147,511 & n/d & n/d & 13,133 & n/8 & \(n / \mathrm{d}\) & 14,221 & n/d & \(\mathrm{n} / \mathrm{d}\) & 0.0299 \\
\hline 1966 & 193,667 & n/d & n/d & 178,116 & 19/d & n/d & 15,551 & n/d & n/s & 17,022 & n/d & n/s & 0.0325 \\
\hline 1967 & 218,898 & n/d & n/d & 203,209 & 136,946 & 66,263 & 15,685 & \(n / \mathrm{d}\) & \(n / 8\) & 19,496 & n/a & \(n / 1\) & 0.0397 \\
\hline 1968 & 249,700 & n/d & n/8 & 230,636 & 159,413 & 71,223 & 19,064 & \(n / 8\) & \(n / \mathrm{d}\) & 23,972 & \(\pi / 8\) & \(\pi / 4\) & 0.0376 \\
\hline 1969 & 281,920 & n/d & n/8 & 266,277 & 191,551 & 74,720 & 21,643 & n/d & n/d & 29,495 & 16,609 & 12,886 & 0.0402 \\
\hline 1970 & 332,414 & \(n / d\) & \(n / \mathrm{d}\) & 309,688 & 227,519 & B2, 169 & 22,726 & n/d & n/d & 33,854 & 19,819 & 14,035 & 0.0424 \\
\hline 1971 & 372, 221 & 303 \(6 / 8\) & 1015/8 & 347,379
378,515 & 258,712 & 88,667 & 25, 342 & 17 n/d & n/d & 38,154 & 22,696 & 15,458 & 0.0451 \\
\hline 1972 & 405, 221 & 303, 667 & 101,560 & 378,515 & 285,871 & 92,644 & 26,712 & 17,796 & 8,915 & 43,421 & 26,312 & 17,109 & 0.0486 \\
\hline 1973 & 415,508 & 313,159
316999 & 102,399 & 386, 351 & 293,490 & 92,861 & 29,157 & 19,669 & 9,488 & 48,096 & 29,410 & 18,686 & 0.0517 \\
\hline 1974 & 418,251 & 316,699 & 101,552 & 387,352 & 296,483 & 90,669 & 30,899 & 20,216 & 10,683 & 52,256 & 33,001 & 19,249 & 0.0548 \\
\hline 1975 & 424,629 & 324,286 & 100,343 & 391,835 & 303,376 & 88,459 & 32,794 & 20,910 & 11,884 & 51,436 & 32,751 & 18,685 & 0.0552 \\
\hline 1976 & 434, 156 & 333,185 & 100,970 & 398,838 & 311,111 & 87,721 & 35, 318 & 22,069 & 13,249 & 50, 363 & 32,612 & 17,701 & 0.0539 \\
\hline 1977 & 419,235 & 321,351 & 97,884 & 383,872 & 299,958 & 83,914 & 35, 363 & 21,393 & 13,970 & 47,994 & 31,:05 & 16,789 & 0.0515 \\
\hline 1978 & 421,640 & 322,171 & 99,469 & 383,012 & 298,099 & 84,913 & 38,528 & 24,072 & 14,556 & 45,057 & 28,698 & 16,359 & 0.2484 \\
\hline 1979 & 408, 429 & 310,470 & 97,959 & 369,122 & 286,440 & 82,782 & 39,207 & 24,030 & 15,171 & 43,012 & 2f,969 & 16,043 & 0.5462 \\
\hline 1980 & 414,611 & 314,575 & 100,036 & 374,825 & 290,587 & 84,238 & 39,786 & 23,988 & 15,798 & 42,513 & 26,254 & 16,259 & 0.0452 \\
\hline 1981 & 426,281 & 323,236 & 103,045 & 385,645 & 299,455 & 86,190 & 40,636 & 23,781 & 16,855 & 11,364 & 25,592 & 15,772 & 0.0437 \\
\hline 1982 & \(n / 2\) & \(n / 4\) & n/d & n/a & n/d & \(\pi / d\) & 40,691 & 23,865 & 16,826 & 41,539 & 25,758 & 15,781 & 0.0431 \\
\hline 1983 & n/d & n/d & n/d & n/a & n/d & n/d & 40,098 & 23, 392 & 16,706 & n/d & n/d & \(n / 8\) & 0.0425 (est.) \\
\hline 1984 & \(n / 2\) & n/d & n/a & \(\pi / 2\) & n/d & n/4 & 41,134 & 24, 170 & 16,964 & \(\pi / 2\) & n/d & \(n / 8\) & \(n / 8\) \\
\hline
\end{tabular}
 ararded in year \(1+2 ; \theta_{1+2}=\) total baccalureate degrees amarded in year \(1+2 ; C_{1}=\) total undergraduate degree-credtl enroliment in year 1 (excluding ffrst professional). Publlc and private estimates were based on enrol iment ratios. See Appendlx Table c9 for supporting data.
b/Figures for \(1960-71\) were obtalned from the U.S. Department of Education (1959-79). Flgures for \(1978-84\) were obtalned from the National Sclence Foundation ( \(1973-85 \mathrm{a}\) ) except for the 1979 flgure, whech was Interoolated, Due to differences in taxonomy, HSF numbers for \(1977-84\) may be silghtly higher than numbers that would have been obtained from the Department of Education had data been collected for those years, For the yedr 1977, NSF reported 37,427 graduate students enrolled in psychology; In comparison, the Department of Educatlon reported a sonerhat lover figure of 35,363 (as shown In this table).

C/Figures for 1960-68 were obtalned from the U.S. Department of Education (1948-81), those for 1969-82 from the U.S. Department of Education (1948-89),
d/See Appendlx Table cy for total B,A,s.

APPEVOIX TARE C5 Sociology Enrolfr is in Colleges and Unive- Itles, 8.A. Degrees Awarded in Sociology, and Ratlo of Soclology B.A.s to Total B.A.s, by Control of Institution, 1960-84
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Enroliments} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{B.A. Degrees Aurroed \(¢\)}} & \\
\hline & \multicolumn{3}{|l|}{Total Un'ícryraduate and Groduate Enrol lment} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Est mated \\
Undergraduate Enroliment !a]
\end{tabular}} & \multicolumn{3}{|l|}{Gradute 6} & & & & \begin{tabular}{l}
Ratlo of \\
Sociol. B.A.S \\
to Total B.A.s
\end{tabular} \\
\hline Year & Total & Public & Private & Total & Public & Private & Total & Public & Prluate & Total & Public & Private & Total \\
\hline 1960 & 74,195 & n/d & n/a & 11,266 & n/a & n/4 & 2,929 & 1,540 & 1,389 & 1,182 & n/d & n/d & n/d \\
\hline 1961 & 81,326 & n/d & n/d & 18,049 & n/d & n/d & 3,271 & 1,863 & 1,414 & 1,519 & n/d & n/d & 0.0206 \\
\hline 1962 & 894,982 & \(n / 4\) & n/8 & 91, 4994 & n/d & n/d & 3,488 & 1,975 & 1,513 & 8,183 & n/d & n/d & 0.0214 \\
\hline 1963 & 111,788 & n/d & n/d & 107,854 & \(n / 8\) & \(n / 4\) & 3,924 & 2,928 & 1,596 & 9,054 & n/d & n/d & 0.0221 \\
\hline 1964 & 133,355 & r/d & n/a & 128,732 & n/d & n/d & 4,603 & n/d & n/d & 11,049 & n/d & n/d & 0.0240 \\
\hline 1965 & 139,652 & n/d & n/a & 134,307 & n/d & n/d & 5,345 & n/o & n/d & 12,896 & n/8 & n/8 & 0.0262 \\
\hline 1965 & 170,114 & n/a & n/a & 163,924 & n/d & n/d & 6,190 & n/d & n/d & 15,203 & n/8 & n/8 & 0.0220 \\
\hline 1967 & 189,642 & n/a & \(n / 1\) & 188,954 & 123,296 & 59,658 & 6,688 & n/8 & n/d & 17,751 & n! 0 & n/a & 0.0316 \\
\hline 1968
1969 & 217,927
203699 & n/d & n/d & 210,157 & 1455,258 & 64, 8999 & 1,770 & n/d & 1/d & 22,062 & n/a & n/d & 0,0346 \\
\hline 1969 & 243,609 & n/d & n/a & 234,927 & 169,004 & 65,923 & 8,682 & n/8 & n/d & 26,555 & 14,604 & 11,951 & 0.0362 \\
\hline 1970 & 263,958 & n/d & n/a & 254,093 & 186,675 & 67,418 & 9,865 & n/d & n/d & 30,848 & 17,820 & 13,028 & 0.0387 \\
\hline 1971 & 270,294 & n/a & n/d & 259,911 & 193,614 & 66,357 & 10,323 & n/d & n/a & 33,662 & 19,992 & 13,60 & 0.0398 \\
\hline 1972 & 270, 184 & 203,360 & 66,824 & 260,012 & 196,312 & 63,640 & 10, 172 & 6,988 & 3,184 & 35,626 & 21,89 & 13,883 & 0.0398 \\
\hline 1973 & 249,429 & 188,734 & 60,695 & 239,987 & 181,545 & 57,442 & 10.442 & 7,189 & 3,253 & 35,994 & 22,780 & 13,214 & 0.0387 \\
\hline 1974 & 225,615 & 122,021 & 53,594 & 215, 123 & 164,657 & 50,466 & 10,492 & 1,364 & 3,128 & 35,896 & 23,387 & 12,509 & 0.0376 \\
\hline 1975 & 215,344 & 166,010 & 49,274 & 204,870 & 158,619 & 46,251 & 10,474 & 1,451 & 3,023 & 31,817 & 20,190 & 11,027 & 0.0342 \\
\hline 1976 & 213,928 & 166,215 & 47,653 & 203,512 & 158,751 & 44,761 & 10,46 & 1,524 & 2,892 & 21,90 & 18,506 & 9,464 & 0.0299 \\
\hline 1977 & 193,033 & 150,147 & 42,886 & 183,359 & 143,271 & 40,082 & 9,674 & 6,870 & 2,804 & 24,989 & 16,569 & 8,420 & 0.0269 \\
\hline 1978 & 181,517 & 140,598 & 40,919 & 122,653 & 134,376 & 38,2717 & 8,864 & 6,222 & 2,642 & 22,991 & 15,324 & 1,667 & 0.0247 \\
\hline 1979 & 165.452 & 121,751 & 37,701 & 156,940 & 121,753 & 35,187 & 8,512 & 5,998 & 2,514 & 20,545 & 13,531 & 1,014 & 0.0221 \\
\hline 1980 & 155,457 & 119,968 & 35,489 & 147,298 & 114,194 & 33, 104 & 8,159 & 5,74 & 2,385 & 19,164 & 12,494 & 6,670 & 0.0209 \\
\hline 1981 & 145,926 & 12,673 & 33,253 & 137,925 & 107,099 & 30,826 & 8,001 & 5,574 & 2,427 & 17,582 & 11,311 & 6,211 & 0,0186 \\
\hline 1982 & n/d & n/a & n/d & n/d & \(n / 8\) & n/d & 1,816 & 5,961 & 2,355 & 16,324 & 10,574 & 5,750 & 0.0169 \\
\hline 1983 & n/d & n/a & n/d & n/d & n/d & n/8 & 1,246 & 5,168 & 2,078 & \(n / \mathrm{d}\) & \(n / \mathrm{d}\) & n/d & 0.0152 (est."; \\
\hline 1988 & n/4 & n/a & n/d & n/a & n/8 & n/d & 6,951 & 5,029 & 1,922 & n/8 & n/d & n/d & n/d \\
\hline
\end{tabular}
a/Estimated by the formula \(U_{1}=\left(A_{1+2} / B_{1+2}\right) C_{1}\), where \(\mathrm{J}_{1}\) : sociology undergraduate enrol inent in year \(i_{i} A_{1+2}=\) soclology baccalaureate degrees anarded in year \(1+2 ; B_{1+2}=\) total baccalaureate degrees amarded in year \(1+2 ; C_{1}\) : total undergraduate degree-credt enrollment in year 1 (excluding first professional). Public and private estimates mere based on enrollment ratios. See Appendix Table 19 for supporting data.
b/Figures for 1960-71 mere obtained from the U.S. Department of Education (1959-79). Figures for \(1978-84\) mere obtained from the Nation il Science Foundation (1973-85a) except for the 1979 flgure, which was interpolated. Due to differences In taxonomy, NSF numbers for \(1978-84\) may be slightly higher than numbers that would have been obtalned from the Department of Educatlon had data been collected for those years, For the year 1977, HSF reported 9,686 graduate students enrolled in soclology (with an additional 1,239 enrolled in sociology/anthropology); in compariscy, the Department of Educattc reported a sonemat lower figure of 9,674 (as shom in this table). Groduate enroliments in the interdiscipilinary field of sa 'nlcgy/anthropology are not included in this table, but are presented In Appendix Table C7.

C/Figures for 1950-68 were obtained from the U.S. Department of Education (1948-81), those for 1969-82 from the U.S. Department of Education (1948-89), d/See Append'x Table cy for total B.A.s.

APPENDIX TABEE C6 Anthropology Enrollments in Colleges and Unlversities, B.A. Degrees Amarded In Anthropology, and Ratlo of Anthropology B.A.s to Total B.A.s, by Control of listitution, 1960-84
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{fiscal Year} & \multicolumn{9}{|l|}{Enrolmert:} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{B.A. Degrees Anarded \({ }^{\text {C/ }}\)}} & \multirow[b]{3}{*}{\begin{tabular}{l}
Ratlo of Anthro B.A.S to Total B,A,s \\
Total
\end{tabular}} \\
\hline & \multicolumn{3}{|l|}{Total Under's Vate and Graduat a arolment} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Estimated \\
Undergraduate Enroliment!
\end{tabular}} & \multicolumn{3}{|l|}{Groduate \({ }^{\text {b/ }}\)} & & & & \\
\hline & Total & Public & Private & Total & Public & Prlyate & Total & Pubilic & Prlvate & Total & Public & Prlvate & \\
\hline 1960 & 5,887 & n/d & n/d & 5,015 & \(n / \mathrm{d}\) & n/a & 862 & 437 & 425 & 413 & \(n / d\) & n/d & n/d \\
\hline 1961 & 7,437 & \(n / d\) & n/d & 6,431 & n/d & \(n / \mathrm{d}\) & 1,006 & 538 & 458 & 484 & n/d & n/d & 0.0013 \\
\hline 1952 & 9,120 & n/4 & \(n / 8\) & 1,983 & n/d & n/d & 1,137 & 620 & 517 & 517 & \(n / d\) & n/d & 0.0015 \\
\hline 1963 & 11,399 & n/d & \(\mathrm{n} / \mathrm{d}\) & 10,061 & n/d & n/d & 1,338 & 765 & 573 & 746 & \(n / \mathrm{d}\) & n/d & 0.0018 \\
\hline 1964 & 14,278 & n/d & n/d & 12,726 & \(n / 8\) & n/d & 1,552 & n/d & n/d & 964 & \(n / d\) & \(n / 4\) & 0.0021 \\
\hline 1965 & 15,679 & n/d & n/d & 13,008 & n/d & n/d & 1,871 & n/d & n/d & 1,203 & n/d & n/d & 0.0024 \\
\hline 1965 & 19,123 & n/d & \(n / d\) & 16,800 & n/d & n/4 & 2,323 & n/d & n/d & 1,503 & n/d & n/a & 0.0029 \\
\hline \(190 \%\) & 23,284 & n/d & \(n / 8\) & 20,600 & 13,883 & 6,717 & 2,684 & n/d & n/d & 1,825 & \(n / d\) & n/a & 0.0032 \\
\hline 1968 & 28,331 & n/a & \(n / 4\) & 25,282 & 17,475 & 7,807 & 3,049 & n/d & n/a & 2,261 & n/d & n/d & 0.0036 \\
\hline 1969 & 34,288 & n/d & \(n / 4\) & 30,510 & 22,021 & 8,589 & 3,678 & n/d & n/d & 2,990 & 2,321 & 669 & 0.0041 \\
\hline 1.9 & 40,691 & n/d & \(n / 8\) & 36,774 & 27,017 & 9,757 & 3,917 & n/d & n/d & 3,711 & 2,894 & 817 & 0.0046 \\
\hline 1971 & 45,318 & n/d & \(\mathrm{n} / \mathrm{d}\) & 40,627 & 30,267 & 10,370 & 4,691 & \(n / \mathrm{d}\) & n/a & 4,396 & 3,417 & 969 & 0.0052 \\
\hline 1972 & 48,476 & 36,443 & 12,033 & 43,475 & 32,334 & 10,641 & 5,001 & 3,609 & 1,392 & 5,156 & 4,034 & 1,122 & 0.0058 \\
\hline 1973 & 47,477 & 36,001 & 11,476 & 42,243 & 32,090 & 10,153 & 5,234 & 3,911 & 1,323 & 5,625 & 4,397 & 1,228 & 0.0060 \\
\hline 1974 & 45,472 & 34,589 & 10,883 & 39,902 & 30,541 & 9,361 & 5,570 & 4,048 & 1,522 & 6,002 & 4,756 & 1,246 & 0.0063 \\
\hline 1975 & 45,481 & 34,940 & 10,541 & 39,713 & 30,748 & 8,965 & 5,768 & 4,192 & 1,5i6 & 5,624 & 4,430 & 1,194 & 0,0060 \\
\hline 1976 & 4A, 124 & 34,183 & 9,941 & 38,062 & 29,691 & 8,371 & 6,062 & 4,49? & 1,570 & 5,188 & 4,081 & 1,107 & 0.0956 \\
\hline 1977 & 41,625 & 32,328 & 9,297 & 35,681 & 27,881 & 7,200 & 5,944 & 4,447 & 1,497 & 4,844 & 3,816 & 1,028 & 0.0052 \\
\hline 1978 & 39,215 & 30,275 & 8,940 & 32,487 & 25,285 & 7,202 & 6,728 & 4,990 & 1,738 & 4,300 & 3,353 & 947 & 0.0046 \\
\hline 1979 & 36,366 & 28,022 & 8,344 & 29,830 & 23,142 & 6.608 & 6,536 & 4,880 & 1,656 & 3,998 & 3,018 & 980 & 0.0043 \\
\hline 1980 & 34,108 & 26,294 & 7,814 & 27,765 & 21,525 & 6,240 & 6,343 & 4,769 & 1,574 & 3,606 & 2,173 & 833 & 0.0038 \\
\hline 1981 & 32,637 & 25,084 & 7,553 & 26,315 & 20,434 & 5,881 & 6,322 & 4,650 & 1,672 & 3,34? & 2,465 & 871 & 0.0035 \\
\hline 1982 & n/d & \(\pi / 8\) & n/d & n/d & n/d & n/a & 6,118 & 4,442 & 1,676 & 3,071 & 2,281 & 796 & 0.01032 \\
\hline 1983 & n/d & n/8 & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d & 5,948 & 4,293 & 1,655 & n/a & \(\mathrm{n} / \mathrm{d}\) & \(n / 8\) & 0.6329 (est.) \\
\hline 1984 & n/d & n/d & n/d & n/8 & n/8 & n/d & 5,693 & 4,110 & 1,583 & n/d & \(n / 4\) & \(n / 4\) & n/d \\
\hline
\end{tabular}
 degrees awarded in year \(1+2 ; B_{i+2}=\) total baccalaureate degrees awarded In year \(1+2 ; C_{1}=\) total undergraduate degree-credit enrolliment in year I \{excluding first professional). Public and private estimates were based on enrollment ratlos. See Appendix Table f9 for supportIng data,
b/Figures for 1960.77 were obtained from the U.S. Department of Education (1959-79). Figures for 1978-84 were obtained from the Natlonal Sclence Foundation (i973-85k) exiept for the 1979 flgure, which was interpolated. Due to differences In taxonomy, HSF numbers for \(1978-84\) may be slightly higher than numbers that would have been obtained from the Department of Education had data been collected for those years, For the year 1977, HSF reported 6,622 griduate students enrolled in anthropology (with an additional 1,239 enrolled in sociology/anthropology); in comparison, the Department of Education raprited a somenhat lower flgure of 5,949 (as shown in this table). Graduate enrollments in the interdisciplinary field of sociology/anthropology are not. Includid In this table, but are presented In Appendix Table Cl.

C/figures for 1960-08 were obtained from the U.S. Department of Education (1948-81), those for 1969-82 from the U.S. Department of Education (1948-84). d/see Appendilx Table cy for total B.A.S.

APPENOIX TABLE C7 Graduate Enrollment in Sociology/Anthropology (Interdisciplinary), by Control of Institution, 1978-84릉
\begin{tabular}{llll}
\hline & & & \\
\begin{tabular}{llll} 
Fiscal \\
Year
\end{tabular} & Total & Public & Private \\
\cline { 4 - 5 } 1978 & & 1,398 & 864 \\
1979 & 1,317 & 794 & 534 \\
1980 & 1,236 & 723 & 513 \\
& & & \\
1981 & 1,206 & 722 & 484 \\
1982 & 1,110 & 634 & 476 \\
1983 & 1,133 & 638 & 495 \\
1984 & 1,182 & 610 & 572 \\
\hline
\end{tabular}
a/From the National Science Foundation (1973-85a). The figures for 1979 were interpolated. The NSF taxonomy includes the interdisciplinary field of sociology/anthropology as well as the separate fields of sociology and anthropology. Sociology/anthropology is included in the total graduate enrollment data presented in Appendix Table Cl . It is not included in Appendix Tables C5 and C6 which present graduate enrollments in sociology and anthropology.

APPENOIX TABLE C8 Speech Pathology/Audiology Enrollments in Colleges and Universities, B.A. Degrees Awarded In Speech Pathology/Audiology, and Ratio of Speech Pathology/Audiology B.A.s to Total B.A.S, by Control of Institution, 1971-84

- Estimated by the formula \(U_{1} \sim\left(A_{1+2} / A_{1+2}\right) C_{1}\), where \(U_{1}\) = speech pathology/dudiology undergraduate enrollment in year \(1 ; A_{1+2}\) " speech pathology/audiology baccalaureate degrees awarded in year \(1+2 ; B_{1+2}=\) total baccalaureate degrees awarded in year \(1+2 ; C_{1}=\) total undergraduate degree-credit enrollment in year \(\{\) (excluding first professional). Public and private estimates were based on enrollment ratios. See Appendix Table cg for supporting data.
- \(/\) Figures for 1971.71 were obtained from the U.S. Department of Education (1959-79). Figures for \(1978-89\) were obtained from the National Science Foundation (1973-85a) except for the 1979 figure, which was Interpolated. Due to differences in taxoncmy, HSF numbers for \(1978-89\) may be slightly higher than numbers that would have been obtained from the Department of Education had data been collected for those years. For the year 1977, HSF reported 7,725 graduate students enrolled In speech pathology/audiology; in comparison, the Department of Education reported a somewhat lower figure of 7,308 (as shown in this table).
c/F figures for 1971-83 mere obtained from the U.S. Department of Education (1948-83),
d/See Appendix Table Cg for total B.A.S.

APPEKOIX TABLE C9 Total Undergraduate Degree-CredIt Enrollment, Total B.A. Degrees, and B.A. Degrees Awarded In the Behavioral Sclences, by Control of Institution, 1950-83
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Fiscal } \\
& \text { year } \\
& \hline
\end{aligned}
\]} & \multicolumn{12}{|l|}{Total Undergraduate Degree-Credit Enrollment (thousands)} \\
\hline & \multicolumn{6}{|l|}{Including First Professionala Excluding First Professionalb/} & \multicolumn{3}{|l|}{Total B.A. Degrees Axarded (excluding first professional) §} & \multicolumn{3}{|l|}{8.A. Degrees Avarded in Behavloral Sciences \(\int\) /} \\
\hline & Total & Public & Prlvate & Total & Public & Private & Total & Public & Private & Total & Public & Prlvate \\
\hline 1950 & 3,402 & n/a & n/d & 3,334 & n/d & n/d & n/a & n/d & n/a & n/a & n/d & n/d \\
\hline 1961 & 3,610 & n/d & n/d & 3,538 & n/d & n/d & 365,337 & n/d & n/d & 16,527 & n/d & n/d \\
\hline 1962 & 3,891 & n/d & \(n / 4\) & 3,813 & n/d & n/d & 382,822 & n/d & n/d & 18,398 & \(n / 8\) & n/d \\
\hline 1953
1954 & 4,207 & n/d & n/d & 4,123 & n/d & n/d & 410,421 & n/d & n/d & 20,862 & n/d & \(n / \mathrm{d}\) \\
\hline 1964
1965 & 4,529 & \({ }^{\text {n/d }}\) & \%/8 & 4,438 & n/d & n/d & 460,467 & n/d & i/d & 25,372 & \(n / 8\) & \(n / 8\) \\
\hline 1965 & 4,342 & 2,802 & 1,541 & 4,255 & n/d & n/d & 492,984 & n/d & \(\pi / d\) & 28,820 & \(n / 8\) & \(n / 8\) \\
\hline 1965 & 4,829 & 3, 184 & 1,645 & 4,732 & n/d & n/d & 524,117 & n/d & n/d & 33,728 & n/d & n/d \\
\hline 1967 & 5,160 & 3,451 & 1,709 & 5,057 & 3,408 & 1,649 & 562,369 & n/a & \(n / 2\) & 39,072 & \(n / d\) & \(\mathrm{n} / \mathrm{d}\) \\
\hline 1958 & 5,557 & 3,810 & 1,741 & 5,437 & 3,758 & 1,679 & 636,863 & n/8 & n/8 & 48,295 & \(\mathrm{n} / \mathrm{d}\) & \(n / \mathrm{d}\) \\
\hline 1969 & 6,043 & 4,308 & 1,735 & 5,905 & 4,248 & 1,657 & 134,002 & 466,133 & 267,869 & 59,040 & 33,534 & 25,506 \\
\hline 1970 & 6,529 & 4,749 & 1,780 & 6,377 & 4,685 & 1,692 & 798,070 & 523,442 & 274,628 & 68,413 & 40,533 & 27,880 \\
\hline 1971
1972 & 6,889
1,104 & 5,076
5,302 & 1,813 & 6,719
6,013 & 5,004 & 1,715 & 846,110 & 562,345 & 283,765 & 17,629 & 47,175 & 30,454 \\
\hline 1972
1973 & 7,104 & 5,302 & 1,802 & 6,913 & 5,221 & 1,692 & 898, 110 & 604,471 & 289,639 & 86, 066 & 53,618 & 32,448 \\
\hline 1974 & 1,396 & 5,589 & 1,807 & \(\pm 187\) & 5,501 & 1685 & & & 29, 094 & 92,289 & 58,704 & 33,585 \\
\hline 1975 & 1,833 & 5,986 & 1,847 & 7,610 & 5,892 & 1,718 & 931,663 & 640,524 & 291,139 & 92,609 & 61,143 & \begin{tabular}{l} 
31, \\
\hline 1,466
\end{tabular} \\
\hline 1976 & B,468 & 6,520 & 1,948 & 8,234 & 6,423 & 1,811 & 934,443 & 640,799 & 293,644 & 87,446 & 58,609 & 28,837 \\
\hline 1977 & 8,559 & 6,595 & 1,964 & 8,312 & 6,495 & 1,817 & 928, 228 & 635,909 & 292,319 & 81,491 & 54,685 & 26,806 \\
\hline 1978
1979 & 8,722 & 6,696 & 2,025 & B,471 & 6,593 & 1,878 & 930,201 & 633,183 & 297,018 & 75,899 & 50,217 & 25,682 \\
\hline 1979 & 8,709
8,962 & 6,662 & 2,047 & B,452 & 6,557 & 1,895 & 931,340 & 627,084 & 304,256 & 71,109 & 46,485 & 24,624 \\
\hline 1980 & 8,962 & 6,850 & 2,112 & 8,699 & 6,744 & 1,955 & 940,251 & 629,338 & 310,913 & 68,859 & 44,475 & 24,384 \\
\hline 1981 & 9,354 & 7,162 & 2,192 & 9,074 & 7,046 & 2,028 & 945,877 & 632,168 & 314,709 & 65,733 & 42,334 & 23,399 \\
\hline 1982 & 9,341 & 7,132 & 2,209 & 9,066 & 1,020 & 2,046 & 964,043 & 641,751 & 322,292 & 64,386 & 41,576 & 22,810 \\
\hline 1983 & 9,398 & 7,184 & 2,214 & 9,120 & 7,071 & 2,049 & n/d & \(n / 8\) & n/d & \(n / \mathrm{d}\) & \(\mathrm{n} / \mathrm{d}\) & n/a \\
\hline
\end{tabular}
a/Figures for \(1960-64\) mere obtained from the U.S. Department of Education (1961-84a), those for 1965-75 from the U.S. Department of Edveation (1973-82), and the one for 1976 from the U.S. Department of Education (1974-83). Figures for \(1977-81\) were obtalned by subtracting enrol inent for master's and doctor's degrees from total degree-credit enroiliment (U.S. Departinent of Education, 1974-83). Figures for \(1982-83\) were obtained by odding first professional enrol iment to total undergraduate degree-credit enrol Iment excluding first professional. First professional enrol Iment data were obtadned fron the U.S. Department of Eddcation (1961-84b). See footnote b/f for source of undergraduate degree-credit enrol Iment for 1982-83.
b/Figures for \(1960-66\) mert estimated at \(98 x\) of total undergroduate degree-credit enroliment (including first professional). Those for 1967-81 were obtained by subtracting first professional enrol iment from total degree-credit undergriduate enrol Inent (including first professional). First professlonal enrol iment data for \(1967-77\) were obtained from the U.S. Departrent of Edvcation ( \(1959-79\) ), data for \(1978-81\) from the U.S. Department of Edccat ion (1961-840), FIgures for 1982-83 were derived from total undergraduate enrol Iment (Including nondegree-credit) data obtalned from the U.S. Departnent of Edvication (1961-846). These data have been adjusted wilt the percentages used by the V.S. Department of Education to estimate degree-creedit enrol Iments for 1977 -80.
c/FIgures for 1961-68 nere obtained from the U.S. Department of Education (1988-81), those for 1969-82 fron the U.S. Department of Education (1948-84), Behavioral science B.A.s include psychology, sociology, anthropology, and speech pathology/oudiology. Figures are higher than those presented in the ligs Report because speech pathology/audiology is now included in the taxonomy.

APPENDIX TABLE CIO Behavioral Science Ph.D. Degrees Awarded in Colleges and Universities, by Control of Institution, 1961-84d
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Fiscal } \\
& \text { Year } \\
& \hline
\end{aligned}
\]} & \multicolumn{3}{|l|}{Total Behavioral Sciences} & \multicolumn{3}{|l|}{Total Psychology (Clinical \& Monclinical)} & \multicolumn{3}{|l|}{Clinical Psychology} & \multicolumn{3}{|l|}{Noncl inical Psychology} \\
\hline & Total & Public & Private \\
\hline 1961 & 1,042 & n/a & n/d & 820 & \(\mathrm{n} / \mathrm{a}\) & \(n / \mathrm{d}\) & 381 & n/d & n/d & 439 & n/a & n/d \\
\hline 1962 & 1,121 & n/d & n/d & 856 & n/a & n/d & 362 & n/d & n/d & 494 & n/d & n/d \\
\hline 1963 & 1,184 & n/d & n/d & 890 & n/a & n/d & 367 & n/a & n/a & 523 & n/d & n/d \\
\hline 1964 & 1,297 & n/d & n/d & 1,013 & \(n / \mathrm{a}\) & n/d & 469 & \(\mathrm{n} / \mathrm{d}\) & n/d & 544 & n/d & \(n / 3\) \\
\hline 1965 & 1,275 & n/d & n/d & 954 & n/a & n/d & 398 & n/a & n/a & 556 & n/d & n/a \\
\hline 1966 & 1,496 & n/d & n/d & 1,139 & \(n / 2\) & n/d & 439 & n/a & n/d & 700 & \(\mathrm{n} / \mathrm{d}\) & n/d \\
\hline 1967 & 1,773 & n/a & n/d & 1,295 & n/d & n/d & 529 & n/d & n/d & 766 & n/d & n/d \\
\hline 1968 & 1,970 & n/a & n/d & 1,464 & n/a & n/d & 613 & n/a & n/a & 851 & n/d & n/a \\
\hline 1969 & 2,408 & n/d & n/d & 1,756 & n/a & n/d & 666 & n/a & n/d & 1,090 & \(n /\) d & n/d \\
\hline 1970 & 2,726 & n/d & n/a & 1,888 & n/a & n/d & 707 & n/d & n/a & 1,181 & n/d & n/a \\
\hline 1971 & 3,148 & n/a & n/a & 2,130 & n/a & n/d & 839 & n/d & n/a & 1,291 & n/d & n/d \\
\hline 1972 & 3,310 & 2,121 & 1,189 & 2,280 & 1,490 & 730 & 919 & 633 & 286 & 1,361 & 857 & 504 \\
\hline 1973 & 3,542 & 2,245 & 1,297 & 2,458 & 1,541 & 917 & 1,055 & 673 & 382 & 1,403 & 868 & 535 \\
\hline 1974 & 3,750 & 2,358 & 1,392 & 2,598 & 1,626 & 972 & 1,061 & 653 & 408 & 1,537 & 973 & 564 \\
\hline 1975 & 3,938 & 2,552 & 1,386 & 2,751 & 1,783 & 968 & 1,144 & 771 & 373 & 1,607 & 1,012 & 595 \\
\hline 1976 & 4,190 & 2,673 & 1,517 & 2,883 & 1,807 & 1,076 & 1,293 & 805 & 488 & 1,590 & 1,002 & 588 \\
\hline 1977 & 4,246 & 2,685 & 1,561 & 2,990 & 1,864 & 1,126 & 1,353 & 858 & 495 & 1,637 & 1,006 & 631 \\
\hline 1978 & 4,207 & 2,632 & 1,575 & 3,055 & 1,853 & 1,202 & 1,464 & 880 & 584 & 1,591 & 973 & 618 \\
\hline 1979 & 4,245 & 2,698 & 1,547 & 3,091 & 1,918 & 1,173 & 1,509 & 923 & 586 & 1,582 & 995 & 587 \\
\hline 1980 & 4, 19? & 2,517 & 1,675 & 3,098 & 1,787 & 1,311 & 1,581 & 896 & 685 & 1,517 & 891 & 626 \\
\hline 1981 & 4,472 & 2,727 & 1,745 & 3,358 & \(1:\) & 1,393 & 1,743 & 962 & 781 & 1,615 & 1,003 & 612 \\
\hline 1982 & 4,188 & 2,541 & 1,647 & 3,158 & & 1,328 & 1,681 & 957 & 724 & 1,477 & 873 & 604 \\
\hline 1983 & 4,318 & 2,626 & 1,692 & 3,307 & 1, w & 1,356 & 1,762 & 981 & 781 & 1,545 & 970 & 575 \\
\hline 1984 & 4,177 & n/d & \(n / \mathrm{d}\) & 3,223 & n/d & n/a & 1,715 & n/3 & \(\mathrm{n} / \mathrm{d}\) & 1,508 & n/d & n/a \\
\hline
\end{tabular}
(continued on next page)

APPENOIX TABLE CIO (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{3}{|l|}{Tital Other Behavioral Sci. (Socio.,Anthro., Spch./Ausio.)} & \multicolumn{3}{|l|}{Sociology} & \multicolumn{3}{|l|}{Anthropology} & \multicolumn{3}{|l|}{Speech Pathology/Audiology} \\
\hline & Yolal & Public & Private & Total & Public & Private & Total & Public & Private & Total & Public & Private \\
\hline 1961 & \(22 \%\) & n/a & n/d & 167 & n/d & n/d & 55 & n/d & n/d & n/a & n/a & n/d \\
\hline 1962 & 265 & n/d & n/d & 189 & \(n / d\) & n/d & 81 & \(n / d\) & \(\pi / \mathrm{d}\) & n/a & \(n / d\) & n/d \\
\hline 1963 & 293 & n/a & n/d & 211 & \(n / d\) & n/d & 82 & \(n / \mathrm{d}\) & \(\pi / 2\) & \(\mathrm{n} / \mathrm{a}\) & n/d & n/a \\
\hline 1964 & 284 & n/d & \(n / 3\) & 201 & n/d & \(n / d\) & 83 & n/d & \(n / \mathrm{d}\) & \(n / \mathrm{a}\) & n/a & n/a \\
\hline 1965 & 321 & n/a & n/d & 239 & n/d & n/d & 82 & n/d & n/d & n/a & n/a & n/a \\
\hline 1966 & 357 & n/a & n/a & 260 & n/a & n/d & 97 & n/d & n/d & n/d & n/d & n/a \\
\hline 1967 & 478 & n/d & n/d & 331 & n/d & n/d & 147 & n/d & n/d & n/d & n/a & n/a \\
\hline 1968 & 506 & n/a & n/d & 369 & n/d & n/d & 137 & n/d & \(n / \mathrm{d}\) & n/a & n/a & n/a \\
\hline 1969 & 652 & n/a & \(\mathrm{n} / \mathrm{d}\) & 408 & n/d & n/d & 180 & n/d & n/a & 64 & n/a & n/a \\
\hline 1970 & 838 & \(\mathrm{n} / \mathrm{d}\) & \(n / d\) & 505 & n/d & \(n / d\) & 217 & n/a & \(n / d\) & 116 & n/a & n/d \\
\hline 1971 & 1,018 & n/a & n/a & 585 & n/a & n/a & 239 & n/d & n/d & 193 & n/d & n/a \\
\hline 19\% & 1,030 & 631 & 399 & 639 & 374 & 265 & 260 & 155 & 105 & 131 & 102 & 29 \\
\hline 1973 & 1,089 & 704 & 380 & 599 & 369 & 230 & 326 & 211 & 115 & 159 & 124 & 35 \\
\hline 1974 & 1,152 & 732 & 420 & 645 & 390 & 255 & 379 & 238 & 141 & 128 & 104 & 24 \\
\hline 1975 & 1,187 & 769 & 418 & 680 & 418 & 262 & 386 & 260 & 126 & 121 & 91 & 30 \\
\hline 1976 & 1,307 & 866 & 441 & 734 & 459 & 275 & 428 & 283 & 145 & 145 & 129 & 21 \\
\hline 1977 & 1,256 & 821 & 435 & 725 & 452 & 273 & 385 & 254 & 131 & 146 & 115 & 31 \\
\hline 1978 & 1,152 & 779 & 373 & 610 & 399 & 211 & 399 & 270 & 129 & 143 & 110 & 33 \\
\hline 1979 & 1,154 & 780 & 374 & 632 & 407 & 225 & 383 & 258 & 125 & 139 & 115 & 24 \\
\hline 1980 & 1,094 & 730 & 364 & 601 & 382 & 219 & 370 & 255 & 115 & 123 & 93 & 30 \\
\hline 1981 & 1,114 & 762 & 352 & 605 & 407 & 198 & 369 & 238 & 131 & 140 & 117 & 23 \\
\hline 1982 & 1,030 & 711 & 319 & 568 & 372 & 196 & 333 & 230 & 103 & 129 & 109 & 20 \\
\hline 1983 & 1,011 & 675 & 336 & 525 & 338 & 187 & 373 & 246 & 127 & 113 & 91 & 22 \\
\hline 1984 & 954 & n/d & n/d & 515 & n/d & n/a & 335 & \(\pi / 4\) & n/d & 104 & n/a & n/a \\
\hline
\end{tabular}
a/From the National Research Council (1958-85). Foreign nationals who received doctorates from U.S. institutions are included.
b/Includes clinical and school psychology, counseling, and guidance.

APPENOIX TABLE Cll Behavioral Science Postdoctoral Appointments, 1962-83o/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Fiscal Year} & \multicolumn{5}{|l|}{All Behavioral Fields} & \multicolumn{5}{|l|}{Clinical Psychology} \\
\hline & \multicolumn{4}{|c|}{Academid} & \multirow[b]{2}{*}{Nonacademic} & \multirow[b]{2}{*}{Total} & \multicolumn{3}{|l|}{Academic b/} & \multirow[b]{2}{*}{Nonacadenic} \\
\hline & Total & Total & Public & Private & & & Total & Public & Private & \\
\hline 1962 & 137 & n/d & n/d & n/d & n/d & n/d & n/a & n/d & n/d & n/a \\
\hline 1963 & n/d & n/ & n/a & n/d & n/d & n/d & n/2 & n/d & n/d & n/d \\
\hline 1964 & 209 & n/a & n/d & n/d & n/d & n/d & n/2 & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d \\
\hline 1965 & n/d & n/a & n/d & n/d & n/d & n/d & n/a & n/d & n/d & n/d \\
\hline 1966 & 251 & n/a & n/d & n/d & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d & n/2 & n/d \\
\hline 1967 & n/d & n/a & n/a & n/d & n/d & \(n / 8\) & n/d & n/d & n/d & n/d \\
\hline 1968 & 331 & n/d & n/a & n/d & n/d & \(n /\) d & n/d & n/d & n/2 & \(\mathrm{n} / \mathrm{d}\) \\
\hline 1969 & \(\mathrm{n} / \mathrm{d}\) & n/d & n/a & n/d & n/d & \(n / d\) & n/a & n/d & n/d & n/d \\
\hline 1970 & 415 & n/a & n/a & n/d & n/d & n/a & n/a & \(n / 2\) & n/d & \(n / d\) \\
\hline 1971 & n/d & n/a & n/a & n/8 & n/d & n/d & n/d & n/d & n/d & n/d \\
\hline 1972 & \(\mathrm{n} / \mathrm{d}\) & n/d & n/a & n/2 & n/a & n/8 & \(n / 2\) & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) \\
\hline 1973 & 482 & 320 & 195 & 125 & 162 & 125 & 46 & 28 & 18 & 79 \\
\hline 1974 & n/d & n/d & n/a & nid & n/d & n/d & \(n / 8\) & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d \\
\hline 1975 & 705 & 556 & 355 & 201 & 149 & 156 & 79 & 51 & 22 & 77 \\
\hline 1976 & n/d & n/d & n/d & n/d & n/d & \(n / 2\) & \(n / 2\) & n/d & n/a & n/d \\
\hline 197 & 997 & 736 & 416 & 320 & 261 & 357 & 186 & 96 & 90 & 171 \\
\hline 1978 & n/d & n/d & n/a & n/d & n/d & n/d & n/d & \(n /\) \% & n/d & n/d \\
\hline 1979 & 1,111 & 795 & 380 & 415 & 316 & 302 & 182 & 59 & 123 & 120 \\
\hline 1980 & n/a & n/d & n/a & n/2 & n/d & n/a & n/d & n/d & n/d & n/d \\
\hline 1981 & 972 & 705 & 395 & 310 & 267 & 262 & 160 & 99 & 61 & 102 \\
\hline 1982 & n/d & n/d & n/d & n/d & n/d & n/\% & \(\mathrm{n} / \mathrm{a}\) & n/d & n/d & n/d \\
\hline 1983 & 1,039 & 652 & 493 & 159 & 387 & 466 & 179 & 142 & 37 & 287 \\
\hline
\end{tabular}
(continued on next page)

APPENDIX TABLE CII (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Fiscal Year} & \multicolumn{5}{|l|}{Nonclinical Psychology} & \multicolumn{5}{|l|}{Other Behavioral Sciences} \\
\hline & \multicolumn{4}{|c|}{Academic b/} & \multirow[b]{2}{*}{Nonacademic} & \multirow[b]{2}{*}{Total} & \multicolumn{3}{|l|}{Academic \({ }^{\text {b/ }}\)} & \multirow[b]{2}{*}{Honacademic} \\
\hline & Total & Total & Public & Private & & & Total & Public & Private & \\
\hline 1962 & n/d & n/d & n/d & n/a & n/d & n/d & n/d & n/d & n/d & n/d \\
\hline 1963 & n/d & n/d & n/d & \(n / d\) & \(n / \mathrm{d}\) & \(\mathrm{n} / \mathrm{d}\) & \(n / d\) & n/d & \(n / \mathrm{d}\) & \(n / d\) \\
\hline 1964 & n/d & n/d & \(\mathrm{n} / \mathrm{a}\) & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d & n/a & \(\pi / d\) & n/d & n/d \\
\hline 1965 & n/d & n/a & n/d & n/a & n/d & n/a & \(n / 2\) & \(n / d\) & \(n / d\) & n/d \\
\hline 1966 & n/d & n/a & n/d & n/a & n/d & n/d & n/a & n/d & n/d & n/d \\
\hline 1967 & n/d & n/a & n/d & n/d & n/d & n/d & \(n / 4\) & n/d & n/d & n/d \\
\hline 1958 & n/d & n/a & n/d & n/d & n/d & \(n / d\) & \(n / d\) & n/d & n/d & n/d \\
\hline 1969 & n/d & n/d & 1/d & n/d & n/a & n/d & n/d & n/d & n/d & n/d \\
\hline 1970 & n/d & \(n / d\) & \#1/ & n/d & n/d & \(n / d\) & \(n / 2\) & n/d & \(n / d\) & \(n / \mathrm{d}\) \\
\hline 1971 & n/d & n/d & n/d & n/d & n/a & n/d & n/d & n/d & n/d & n/d \\
\hline 1972 & n/d & n/d & n/d & n/d & n/a & n/d & n/d & n/d & n/d & \(n / d\) \\
\hline 1973 & 259 & 197 & 127 & 70 & 62 & 98 & 71 & 40 & 37 & 21 \\
\hline 1974 & n/d & n/a & n/d & n/a & n/a & n/a & n/d & n/d & n/d & n/d \\
\hline 1975 & 398 & 368 & 258 & 110 & 30 & 151 & 109 & 40 & 69 & 42 \\
\hline 1976 & n/a & n/d & n/a & n/a & n/d & n/a & n/d & n/d & n/d & n/d \\
\hline 1977 & 394 & 344 & 218 & 126 & 50 & 246 & 206 & 102 & 104 & 40 \\
\hline 1978 & n/2 & n/d & n/a & n/d & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & n/a & n/d & n/d \\
\hline 1979 & 527 & 359 & 173 & 186 & 168 & 282 & 254 & 148 & 106 & 28 \\
\hline 1989 & n/d & n/d & n/a & n/d \\
\hline 1981 & 511 & 379 & 174 & 205 & 132 & 199 & 166 & 122 & 44 & 33 \\
\hline 1982 & n/d \\
\hline 1983 & 302 & 249 & 173 & 76 & 53 & 271 & 224 & 178 & 46 & 47 \\
\hline
\end{tabular}
a/Clinical psychology includes clinical and school psychology, counseling, and guidance. All other psychology fields are considered nonclinical. Other behavioral sciences include anthropology, sociology, and speech pathology/audiology. Figures for \(1962-70\) were estimated by the comittee. Figures for 1973-83 are based on the most recent data available from the National Research Council (1973-84). Foreign nationals who received doctorates from U.S. institutions are included.
b/Public and private figures were adjusted by the committee to include a small number of individuals for whom control of institution could not be determined.

APPENoIX TABEE CI2 Ph,D,s Employed in All Behavioral Science Fields, 1967-833/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multirow[t]{2}{*}{\begin{tabular}{l}
lotal \\
tabor \\
Force
\end{tabular}} & \multicolumn{11}{|l|}{Acdemia (excluding postdocs, 1-} \\
\hline & & Total & Public & Private & Postoc. Appts. & Bus iness & Gov't. \({ }^{\text {d }}\) & Hospitals/ Clinics & NonProfit & Self: Employed & 0ther & Unemployed and Seeking \\
\hline 1962 & 11,240 & 5,339 & n/d & \(\pi / 8\) & 137 & n/d & n/d & n/d & n/d & n/d & 5,730 & 34 \\
\hline 1963 & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d & n/d & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d \\
\hline 1964 & 13,606 & 8,143 & n/d & n/d & 209 & n/d & \(n / 8\) & n/d & n/d & n/d & 5,227 & 27 \\
\hline 1965 & n/d & n/d & n/d & n/d & n/a & n/d \\
\hline 1966 & 15,746 & 9,783 & n/d & n/d & 251 & n/d & n/d & n/d & \(n / \pi\) & n/d & 5,681 & 31 \\
\hline 1967 & n/d & n/d & n/d & n/d & n/d & n/d & \(n / d\) & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d & \(n / \mathrm{d}\) & n/d \\
\hline 1968 & 19,953 & 12,915 & n/d & \(\pi / 8\) & 331 & n/d & \(n / \mathrm{d}\) & n/d & n/d & n/d & 6,667 & 40 \\
\hline 1969 & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & \(n / d\) & n/d & n/d & \(n / 2\) & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d & n/d \\
\hline 1970 & 24,253 & 16,175 & n/d & n/d & 415 & \(\pi / d\) & \(n / 4\) & n/d & n/d & n/d & 1,566 & 97 \\
\hline 1971 & n/d & n/d & n/d & \(\pi / \mathrm{d}\) & n/d & n/d & n/d & n/a & n/d & \(n / \mathrm{d}\) & n/3 & n/d \\
\hline 1972 & n/d & \(\mathrm{n} / \mathrm{d}\) & \(n / \mathrm{d}\) & \(\pi / \mathrm{d}\) & n/b & n/a & n/d & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & \(\mathrm{n} / \mathrm{d}\) & n/d \\
\hline 1973 & 31,699 & 19,928 & 13,807 & 6,121 & 482 & 1,142 & 2,845 & 2,698 & 1,246 & 1,895 & 1,075 & 388 \\
\hline 1974 & n/d & n/d & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d \\
\hline 1975 & 38,737 & 23,624 & 16,091 & 1,533 & 705 & 1,404 & 2,632 & 4,936 & 1,161 & 2,748 & 1,138 & 389 \\
\hline 1976 & n/d & n/d & n/d & n/d & n/a & n/a & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d & n/d & n/d \\
\hline 1971 & 44,283 & 25,582 & 17,726 & 1,856 & 997 & 1,793 & 2,93: & 5,595 & 1,487 & 3,725 & 1,419 & 754 \\
\hline 1978 & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d & n/d & \(\pi / 6\) & \(\mathrm{n} / \mathrm{d}\) & \(\mathrm{n} / \mathrm{d}\) & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d \\
\hline 1979 & 49,322 & 26,896 & 18,275 & 8,621 & 1,111 & 1,901 & 3,288 & 6,157 & 2,164 & 5,209 & 1,847 & 749 \\
\hline 1980 & n/a & n/d & \(n / d\) & n/d & n/d & n/d & \(\pi / d\) & n/d & n/d & n/d & n/d & n/d \\
\hline 1981 & 53,815 & 20,235 & 19,023 & 9,212 & 972 & 2,164 & 3,351 & ':' & 2,120 & 1,352 & 1,808 & 732 \\
\hline 1982 & n/d & n/d & n/d & n/d & n/d & n/a & n/d & n/d & n/d & n/d & n/d & n/a \\
\hline 1983 & 58,811 & 29, 776 & 19,890 & 9,886 & 1,039 & 3,390 & 3,559 & 6,584 & 1,865 & 9,707 & 1,978 & 913 \\
\hline
\end{tabular}
a/Behavioral sciences include anthropology, sociology, psychology, and speech pathology/audiology. Figures for \(1962-70\) were estimated by the comittee. Figures for 1973-81 are based on the most recent data available from the Nitional Research Council (1973-84). Foreign nationals who received doctorates from U.S. institutions are included,
b/public and private figures were adjusted by the committee to include a small nunber of ac'remically employed individuals for whom control of institution could not be determined.

C/Includes FFROC laboratories for 1973-83. For other years, FFRDC laboratories may be included in any category.

APPENDIX TABLE CI3 Ph, D, SEmployed In Clinical Psychology, I973-63a/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fliscal Year} & \multirow[t]{2}{*}{\begin{tabular}{l}
Total \\
Lahor \\
Force
\end{tabular}} & \multicolumn{11}{|l|}{Academla (excluding pastdocs, \({ }^{\text {b }}{ }^{\text {b }}\) )} \\
\hline & & Total & Public & Private & Postdoc. Appts. & Business & Gov't. 5 & \begin{tabular}{l}
Hospltals/ \\
cilincs
\end{tabular} & NonProfit & \begin{tabular}{l}
self. \\
Employed
\end{tabular} & Other & Unemployed and Seeking \\
\hline 1973 & 11,574 & 4,341 & 3,266 & 1,075 & 125 & 101 & 1,44 & 2,417 & 497 & 1,520 & 821 & 111 \\
\hline 1974 & \(\mathrm{n} / \mathrm{d}\) & n/8 & n/2 & n/d & n/d & n/d & n/d & \(n / \mathrm{d}\) & \(n / d\) & n/d & \(\mathrm{n} / \mathrm{s}\) & n/d \\
\hline 1975 & 14,816 & 5,140 & 3,171 & 1,409 & 156 & 165 & 1,25? & 4,425 & 363 & 2,292 & 995 & 58 \\
\hline 1976 & n/d & \(n / \mathrm{d}\) & n/d & \(n / d\) & n/d & n/d \\
\hline 1971 & 17,578 & 5,438 & 4,117 & 1,321 & 351 & 409 & 1,216 & 5,102 & 65 ? & 3,201 & 1,111 & B2. \\
\hline 1978 & \(\mathrm{n} / \mathrm{d}\) & n/d & n/a & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d \\
\hline 1979 & 21,268 & 5,790 & 3,972 & 1,818 & 302 & 417 & 1,671 & 5,702 & 1,093 & 4,785 & 1,372 & 136 \\
\hline 1980 & \(\mathrm{n} / \mathrm{d}\) & \(n / 8\) & \(\mathrm{n} / \mathrm{d}\) & \(n / 2\) & \(\mathrm{n} / \mathrm{d}\) & n/d & \(n / d\) & \(n / \mathrm{d}\) & \(n / d\) & n/d & \(\pi / \mathrm{d}\) & n/d \\
\hline 1981 & 23,175 & 6,172 & 4,346 & 1,826 & 262 & 880 & 1,653 & 5,931 & 1,032 & 6,264 & 1,367 & 208 \\
\hline 1982 & \%/8 & \%/8 & n/d & \(\mathrm{n} / \mathrm{d}\) \\
\hline 1983 & 26,285 & 6,370 & 4,316 & 2,054 & 466 & 1,004 & 1,854 & 5,131 & 1,165 & 1,999 & 1,529 & 161 \\
\hline
\end{tabular}
a/CiInical psychology includes clinical and school psychology, counseling, and guldance. Figures are based on the most recent data aval lable from the Natlonal Research Council (1973-84), Foreign nationals who received doctorates Irom U.S, Inst Itut lons are Included.
b/Public and private figures were adjusted by the comittee to include a small number of acadenically employed individuals for whom control of Institution could not be determined,
©/ Includes FFRDC Iaboratorles.

APPENDIX TABLECL4 Ph.O.S Employed in Nonclinical Psychology, 1973-83a/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Fiscal } \\
& \text { Year } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Totd \\
Labor \\
Force
\end{tabular}} & \multicolumn{11}{|l|}{Acadenia (excluding postdocs.) \({ }^{\text {b/ }}\)} \\
\hline & & Iotal & Public & Private & Postdoc. Appts. & Business & Cov't. 5 & Hospltals/ Clinics & Non. Profit & \begin{tabular}{l}
self- \\
Employed
\end{tabular} & Other & Unemployed and Seex ing \\
\hline 1973 & 13,340 & 9,452 & 6,429 & 3,023 & 259 & 999 & 1,083 & 269 & 562 & 323 & 212 & 181 \\
\hline 1974 & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & n/a & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) \\
\hline 1975 & 15, 387 & 10,863 & 1,204 & 3,659 & 398 & 1,218 & 1,170 & 470 & 560 & 401 & 129 & 178 \\
\hline 1976 & \(n / \mathrm{d}\) & n/d & n/d & n/a & n/d & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d & n/d & n/d & n/d \\
\hline 1977 & 16, 102 & 10,905 & 1,281 & 3,618 & 394 & 1,344 & 1,404 & 441 & 519 & 443 & 255 & 391 \\
\hline 1978 & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d & n/d & 1/d & n/d & n/d & n/d & \(n / \mathrm{d}\) & n/d & n/d & n/d \\
\hline 1979 & 16,688 & 11,538 & 1,551 & 3,987 & 527 & 1,355 & 1,164 & 401 & 574 & 321 & 434 & 374 \\
\hline 1980 & n/d & n/d & \(n / 8\) & n/d & n/d & \(n / d\) & \(n / d\) & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d & \(n / d\) & n/d \\
\hline 1981 & 18,791 & 12,586 & 8,239 & 4,341 & 511 & 1,821 & 1,235 & 507 & 631 & 905 & 295 & 294 \\
\hline 1982 & n/d & \(\mathrm{n} / \mathrm{d}\) & 11/d & n/s & n/d \\
\hline 1983 & 19,431 & 12,404 & 8,008 & 4,396 & 302 & 2,25 & 1,320 & 629 & 451 & 1,328 & 333 & 406 \\
\hline
\end{tabular}
a/Monclinical psychology includes all psychology fields except clinical and school psychology, counseling, and guidance. Figures arc based on the most recent data avaliable from the hational Research CouncII (1973-89). Foreign nationals who received doctordes from U.S. Institutions are included.
b/Public and private figures were adjusted by the committee to include a small number of acadenically employed individuals for whom control of institution could not be determined.
c/Includes FFROC Iabordtories.

APPENDIX TABLE CIS Pho. 5 Employed in Other Behavioral Sclences, 1973-83d
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& F \text { iscal } \\
& \text { Year } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Tolal \\
Labor \\
Force
\end{tabular}} & \multicolumn{11}{|l|}{Academid (excluding postocos.jb/} \\
\hline & & Total & Public & Private & Postdoc. Appts. & Business & Gor't. C/ & Hospitals/ Clinics & \begin{tabular}{l}
Hon- \\
Proflt
\end{tabular} & \begin{tabular}{l}
Self. \\
Employed
\end{tabular} & Other & Uncmployed and Seeking \\
\hline 1973 & 6,785 & 6,135 & 4,112 & 2,023 & 98 & 42 & 121 & 12 & 187 & 52 & 42 & 96 \\
\hline 1974 & n/d & n/d & n/4 & n/d & n/d & n/d & n/d & n/d & n/d & n/8 & n/d & n/d \\
\hline 1975 & 8,504 & 1,621 & 5,156 & 2,465 & 151 & 21 & 210 & 41 & 238 & 55 & 14 & 153 \\
\hline 1976 & n/a & n/d & n/d & n/d & n/d & m/d & nid & n/d & n/d & n/d & n/d & n/d \\
\hline 1971 & 10,603 & 9,239 & 6,322 & 2,917 & 246 & 40 & 311 & 46 & 306 & 81 & 53 & 201 \\
\hline 1978 & 111/2 & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d & n/d & \(n / \mathrm{d}\) & n/d & n/8 & n/d & n/a & n/d & n/d \\
\hline 1979 & 11,366 & 9,568 & 6,752 & 2,816 & 282 & 129 & 453 & 54 & 497 & 103 & 41 & 239 \\
\hline 1980 & n/d & \(\mathrm{n} / \mathrm{d}\) & n/d & n/d & n/d & n/d & n/d & \(9 / 8\) & n/d & n/d & n/d & n/d \\
\hline 1981 & 11,249 & 9,477 & 6,438 & 3,039 & 199 & 57 & 463 & 37 & 451 & 183 & 146 & 230 \\
\hline 1982 & 13/8 & 11/d & n/a & n/d & n/d & n/d & n/d & \(n / 8\) & n/d & n/d & n/d & n/d \\
\hline 1983 & 13,095 & 11,002 & 1,566 & 3,436 & 271 & 128 & 385 & 218 & 249 & 380 & 116 & 346 \\
\hline
\end{tabular}
a/other behavioral sclences include soclology, anthropology, and speech pathology/audiology. Flgures are based on the most recent data ayallable from the Mational Research Council (1913-84), Foreign nationals who recelved doctorates from U.S. Inst Itutions are included,
b/Public and private flgures mere adjusted by the comilttee to include a small number of acadenically employed individuals for whom control of institution could not be determined.
d/includes FFRDC laboratorles.

APPENoIX TABLE C16 Behay ioral Sciences Faculty/Student Ratios, 1962-81这
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{3}{|l|}{All Behavioral Sciences} & \multicolumn{3}{|l|}{Psycholagy (Clinical and Nonclinical)} & \multicolumn{3}{|l|}{Other Behavioral Sciences (Sociology, Anthropology, Speech Pathology/A.diology)} \\
\hline & \[
\begin{aligned}
& \text { Faculty } \\
& (F) \\
& \hline
\end{aligned}
\] & 4-Yr, Heighted Avg. Enrollment
\[
\text { ( } \mathrm{N} 5 \text { ) }
\] & Ph,0. Faculty/ Student Ratio (F/HS) & \[
\begin{gathered}
\text { Frculty } \\
(F) \\
\hline
\end{gathered}
\] & 4-Yr. Heighted Avg, Enrolinent (HS) & PhoD. Faculty/ Student Ratio ( \(\mathrm{F} / \mathrm{HS}\) ) & \begin{tabular}{l}
Faculty \\
(f)
\end{tabular} & 4-Yr. Heighted Avg. Enrollment (HS) & Ph.D. Facultyl Student Ratio ( \(\mathrm{F} / \mathrm{W}\) ) \\
\hline 1962 & 5,339 & 192,205\%/ & \(0.0278{ }^{\text {b }}\) & n/d & n/d & n/d & n/d & n'd & n/d \\
\hline 1963 & n/d & 211,860 & n/d & n/d & n/3 & \(n / 8\) & \(n / d\) & n/d & n/d \\
\hline 1964 & 8,143 & 244,233 & 0.0333 & \(\pi / 8\) & n/d & \(n / 1 /\) & n/d & n/d & n/d \\
\hline -955 & n/d & 271,679 & n/d & \(\pi / d\) & n/d & \(n / \mathrm{d}\) & \(n / d\) & \(n / 8\) & \(n / d\) \\
\hline 1966 & 9,783 & 313,740 & 0.0312 & \(n / 2\) & n/d & n/d & m/d & n/d & M: \\
\hline 1967 & n/d & 355,859 & n/d & \(n / d\) & \(n / d\) & n/d & \(n / 8\) & n/a & \(8 / 2\) \\
\hline 1968 & 12,915 & 406,997 & 0.0317 & \(n / d\) & n/d & n/d & n/d & \(n / d\) & \(n, i\) \\
\hline 1959 & n/d & 467,380 & n/d & \(n / d\) & n/d & \(\mathrm{n} / \mathrm{d}\) & \(n / d\) & n/d & 1.8 \\
\hline 1970 & 16,175 & 532,012 & 0.0304 & \(n / d\) & n/d & \(n / 8\) & \(n / d\) & \(n / 8\) & \(n, 1\) \\
\hline 1971 & n/d & 601,440 & n/d & \(n / d\) & n/d & n/d & n/d & n/d & n/d \\
\hline 1972 & n/d & 657,374 & n/a & n/a & n/d & n/d & \(n / 8\) & n/d & \(n / d\) \\
\hline 1973 & 19,928 & 715:941 & 0.0278 & 13,793 & 383,970 & 0.0359 & 6,135 & 325,774 & 0.0188 \\
\hline 1974 & n/d & 736,628 & n/a & n/d & 405,407 & \(\mathrm{n} / \mathrm{d}\) & \%/8 & 328,122 & n/d \\
\hline 1975 & 23,624 & 135,024 & 0.0321 & 15,003 & 416,229 & 0.0384 & 1,621 & 318,795 & 0.0239 \\
\hline 1976 & n/d & 728,374 & n/a & n/d & 422,571 & \(\mathrm{n} / \mathrm{d}\) & n/d & 305,803 & n/d \\
\hline 1917 & 25,582 & 720,993 & 0.0355 & 15,343 & 425,843 & 0.0384 & 9,239 & 295,150 & 0.0313 \\
\hline 1978 & \% \({ }^{\mathrm{n} / \mathrm{a}}\) & 709,212 & n/d & n/d & 425,509 & n/d & \%/d & 283,703 & n/d \\
\hline 1979 & 26,895 & 689,264 & 0.0390 & 17,328 & 420,123 & 0.0412 & 9,568 & 268,541 & 0.0356 \\
\hline 1980 & n/d & 667,851 & n/d & n/d & 415,664 & n/d & \(n / \mathrm{d}\) & 252,187 & \(\pi / 8\) \\
\hline 1981 & 28,235 & 653,696 & 0.0432 & 18,758 & 415,667 & 0.0451 & 9,477 & 238,029 & 0.0398 \\
\hline
\end{tabular}
 4 -year weighted average of enrol Iments, i.e., \((\mid \mathrm{HS})_{t}=1 / 6\left(S_{t}+2 S_{t-1}+2 S_{t-2}+S_{t-3}\right)\), where \(S=\) total groduate and undergraduate enrollments in the behavioral science area. See Appendix Tables \(\mathrm{Cl}, \mathrm{C4}-6\), and CB for support ing, uta.
b/Estinated by the comittee.

APPENOLX TARE CI7 Ph, D, SAcaderalcally Employed in the Behayioral Sciences, by Enployment Status and Iype of Insiltution, 1973-833/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Fiscal Yedr} & \multirow[b]{3}{*}{Employment Status} & \multicolumn{3}{|l|}{All Behavioral Fields} & \multicolumn{3}{|l|}{Clinical Psychology} & \multicolumn{3}{|l|}{Honcel Inical Psychology} & \multicolumn{3}{|l|}{Other Behavioral Sc /.} \\
\hline & & \multicolumn{3}{|l|}{Iype of Institution} & \multicolumn{3}{|l|}{Iype of Institution} & \multicolumn{3}{|l|}{type of lnstitution} & \multicolumn{3}{|l|}{Type of Ins:itution} \\
\hline & & Total & 4.Year & 2.Year & Total & 4.Yedr & \(2 . \mathrm{Yegr}\) & Totol & 4-Year & ?-Year & Intal & 4-Year & 2.Year \\
\hline \multirow[t]{3}{*}{1973} & Total & 19,928 & 19,361 & 567 & 4,341 & 4,155 & 186 & 9,452 & & & & & \\
\hline & Full-7ime & 19,220 & 18,710 & 510 & 4,159 & 3,971 & 182 & 9,452 & 9,164
8,909 & \(\begin{array}{r}308 \\ 255 \\ \hline\end{array}\) & 6,135
5,897 & 6,062
5,824 & 73 \\
\hline & Part.Tine & 708 & 6bl & 57 & ? & \({ }_{178}\) & 18 & - 288 & 8,909
235 & \({ }_{53}\) & 5,897
238 & 5,824
238 & 73 \\
\hline \multirow[t]{3}{*}{1975} & Total & 23,624 & 22,923 & 701 & 5,140 & 4,946 & 194 & 10,863 & 10,528 & 335 & & & \\
\hline & Full-Time & 22,887 & 22,255 & 632 & 4,965 & 4,778 & 187 & 10,511 & 10,210 & 301 & 1,413 & 3,449 & 172 \\
\hline & Part-TIme & 137 & 668 & 69 & 115 & 168 & 1 & 352 & 318 & 34 & 208 & \({ }_{180}\) & 28489 \\
\hline \multirow[t]{3}{*}{197} & Total & 25,582 & 24,706 & 816 & 5,938 & 5,272 & 166 & 10,905 & 10,438 & 467 & & & \\
\hline & Full-Time & 24,736 & 23,970 & 766 & 5,233 & 5,074 & 159 & 10,505 & 10, 124 & 381 & 9,299 & & 223 \\
\hline & Fart-Time & 846 & 136 & 110 & 205 & 198 & 7 & 400 & 114 & 86 & 241 & \({ }^{2} 2\) & 12 \\
\hline \multirow[t]{3}{*}{1979} & Total & 26,896 & 26,003 & 893 & 5,10 & 5,621 & 169 & 11,538 & 11,090 & 448 & & & \\
\hline & Full-Tine & 25,566 & 24,836 & 130 & 5,463 & 5,318 & 145 & 10,966 & 10,619 & 397 & 9,137 & & 276 \\
\hline & Part-TIme & 1,330 & 1,167 & 163 & 327 & \(30]\) & 24 & 572 & 471 & 101 & 9.91 & \({ }^{8} 894\) & 239
31 \\
\hline \multirow[t]{3}{*}{1981} & Total & 28,235 & 22,06? & 1,173 & 6,172 & 5,806 & 366 & 12,586 & & & & & \\
\hline & Fullotime & 27,098 & 26,065 & 1,033 & 5,802 & 5,464 & 338 & 12, 181 & 11, 12048 & 524
437 & 9,471
9,111 & 9,194
88854 & 283 \\
\hline & Part-Time & 1,131 & 99 & 140 & 370 & 342 & 28 & \({ }_{405}\) & \({ }_{318}\) & 87 & 9, 66 & 8,854 & \({ }^{25}\) \\
\hline \multirow[t]{3}{*}{1983} & Total & 29,776 & 28,487 & 1,289 & 6,370 & & 219 & & & 632 & & & 438 \\
\hline & Fullotime & 28,091 & 26,964 & 1,127 & 5,903 & 5,684 & 219 & 11,871 & 11,315 & 556 & 10,317 & 10,964 & 358
353 \\
\hline & Part. 7 Ime & 1,685 & 1,523 & 162 & 467 & \({ }_{467}\) & 0 & \({ }_{533}\) & \({ }_{4}{ }^{1}\) & 76 & 685 & \(\stackrel{9}{9} 6\) & \({ }^{353}\) \\
\hline \multirow[t]{3}{*}{Average Annual Growth Reis: from 1973-81} & Total & 4.1 & 3.9 & 8.6 & 3.9 & & & & & & & & \\
\hline & Full-Time & 3.9 & 3.7 & 8.3 & 3.6 & 3.6 & 1.9 & 2.6 & 2.4 & 8.1 & 6.0
5.8 & 5.15 & 19.6
17.1 \\
\hline & Part-Tine & 9.1 & 8.9 & 11.0 & 9.9 & 10.1 & 1. & 6.3 & 6.9 & 3.7 & 11.2 & 5.9
9.7 & 17.1 \\
\hline
\end{tabular}
d/cimical psychology includes clinical and school psychology, counsel ing, and guldance. All other psychology fields are considered nonelinical. Other behavioral sciences inelude anthropology, sociology, and speect pathology/audiology. Figures are baseo on the nost recent data available from the Mat ional Research Councti (1973-84). Foreign aationals who received doctorates from U.S. Institutions are Included, Indivdouals on postdoctoral appointments are excluded.

APPENOIX TABLE C18 Behavioral Science R and D Expenditures in Colieges and Universities, by Control of Institution, 1960-83 (\$ millions)

a/Figures for even years from 1964-70 and for all years from 1972-83 were obtained from the National Science Foundation (1975-85). The 1978 figures are NSF estimates. Those for other years were estimated by the committee. Items may not sum to totals due to rounding.
b/rom the U.S. Bureau of the Census.

APPENDIX TABLE C19 Average Behavioral Science \(R\) and \(D\) Expenditures per School in Colleges and Universities, by Control of Institution, 1972-83a/ (1972 \$, thousands)
\begin{tabular}{llllllll}
\hline & & & & & & & \\
\hline
\end{tabular}
a/See Appendix Table C18 for supporting data.
b/From the Natioual Science Foundation, For 1978 the number of doctorate-granting institutions was obtained from NSF; the number of master's-grant ing institutions was estimated by the commictee.

APPENDIX TABLE C2O Psychology \(R\) and \(D\) Expenditures in Colleges and Universities, by Control of Institution, 1960-83
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{3}{|l|}{Current Dollars (millions) \({ }^{\text {/ }}\)} & \multicolumn{3}{|l|}{1972 Dollars (millions) b/} & \multicolumn{3}{|l|}{Average \(R\) and \(C\) Expenditures per Schnol (197? 8, thousands) \(\int\)} \\
\hline & Total & Public & Private & Total & Puolic & Private & Total & Public & Private \\
\hline 1960 & 16.160 & n/d & n/d & 23.523 & n/d & n/d & n/a & n/d & n/d \\
\hline 1961 & 19.075 & n/a & \(n / 2\) & 27.525 & n/a & n/d & n/a & n/d & n/a \\
\hline 1962 & 22.600 & n/d & n/a & 32.057 & n/d & n/a & n/d & n/d & n/a \\
\hline 1963 & 27.025 & 11/a & \(n / 2\) & 37.744 & \(n /\) d & \(\mathrm{n} / \mathrm{d}\) & \(n / d\) & \(n / 8\) & n/d \\
\hline 1954 & 31.904 & \(n / 2\) & n/a & 43.884 & \(n / 2\) & n/d & n/d & n/d & n/d \\
\hline 1965 & 35,376 & n/a & n/a & 47.612 & n/d & \(n /\) d & n/d & \(n / \mathrm{d}\) & n/a \\
\hline 1956 & 40.143 & \(n / 2\) & n/a & 52.270 & n/d & n/d & n/d & n/d & n/a \\
\hline 1967 & 48.986 & n/a & n/a & 62.008 & i/d & n/a & n/d & n/d & n/a \\
\hline 1958 & 59.286 & \(n / 8\) & \(n / 2\) & 71.775 & \(\mathrm{n} / \mathrm{d}\) & n/a & n/d & \(n / 2\) & \(n / 2\) \\
\hline 1969 & 59,296 & \(n / 2\) & n/a & 68.392 & \(\mathrm{n} / \mathrm{d}\) & \(n / 2\) & \(n / \mathrm{d}\) & \(n / d\) & n/d \\
\hline 1970 & 59.250 & n/a & n/a & 64.825 & n/d & \(n / d\) & n/d & n/d & n/d \\
\hline 1971 & 64.500 & n/d & n/a & 67.188 & n/d & n/a & n/d & n/d & n/a \\
\hline 1972 & 69.025 & 46.015 & 23.010 & 69,025 & 46.015 & 23.010 & 117 & 137 & 90 \\
\hline 1973 & 73.742 & 47.503 & 26.239 & 69.699 & 44.899 & 24.801 & 118 & 134 & 97 \\
\hline 1974 & 74.236 & 48.920 & 25.316 & 63.997 & 42.172 & 21.824 & 107 & 126 & 84 \\
\hline 1975 & 80.322 & 55.416 & 24.906 & 63.146 & 43.566 & 19.580 & 118 & 135 & 92 \\
\hline 1976 & 17.883 & 51.871 & 26.012 & 58.165 & 38.739 & 19.426 & 109 & 120 & 91 \\
\hline 1977 & 85.129 & 55.011 & 30.118 & 60.077 & 38.822 & 21.255 & 112 & 121 & 99 \\
\hline 1978 & 89,664 & 57,453 & 32.211 & 58.970 & 37.786 & 21.i84 & 105 & 114 & 92 \\
\hline 1979 & 100.385 & 63.839 & 36.547 & 60.671 & 38.583 & 22.088 & 107 & 116 & 95 \\
\hline 1980 & 111.177 & 71.981 & 39.196 & 62.312 & 40,344 & 21.968 & 11 & 122 & 95 \\
\hline 1981 & 128.560 & 85.548 & 43.012 & 65.881 & 43.839 & 22.042 & 117 & 132 & 95 \\
\hline 1982 & 131.88 .3 & 86.119 & 45.764 & 63.749 & 41.628 & 22.121 & 113 & 125 & 96 \\
\hline 1983 & 137.170 & 90.712 & 46.458 & 63.614 & 42.068 & 21.545 & 113 & 127 & 93 \\
\hline
\end{tabular}

2/Figures for even years from 1964-70 and for all years from 1972-83 were obtained from the National science Foundation (1975-85). The 1978 figures are NSF estimates. Those for other yedrs were estimated by the comittee. Items may not sum to totals due to rounding.
b/ 1972 dollars were obtained by using the Implicit GNP Price Deflator (U.S. Sureau of the Census--see Appendix Table C18). Itens may not sum to totals due to rounding.
c/See Appendix Table cig for number of schools reporting. \(\quad\) R.4 4

APPENDIX TABLE C21 Sociology \(R\) and \(D\) Expenditures in Colleges and Universities, by Control of Institution, 1960-83
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{3}{|l|}{Current Dollars (millions) \({ }^{\text {a/ }}\)} & \multicolumn{3}{|l|}{1972 Dollars (millions) \({ }^{\text {b/ }}\)} & \multicolumn{3}{|l|}{Averoge \(R\) and \(D\) Expenditures per School (1972 8, thousands) \()^{〔}\)} \\
\hline & Total & Public & Private & Total & Public & Private & Total & Public & Private \\
\hline 1960 & 7.429 & n/d & n/d & 10.814 & \(n / d\) & n/d & n/d & n/a & n/d \\
\hline 1961 & 8.715 & n/d & n/a & 12.662 & \(n / 2\) & n/a & n/d & n/a & n/d \\
\hline 1962 & 10.396 & n/a & n/d & 14.745 & \(n / \mathrm{d}\) & n/a & n/d & n/a & n/d \\
\hline 1963 & 12.432 & n/d & n/d & 17.363 & n/d & n/a & \(n / d\) & n/a & n/a \\
\hline 1964 & 14.664 & \(\mathrm{n} / \mathrm{d}\) & n/d & 20.171 & n/d & n/3 & n/d & n/a & n/a \\
\hline 1965 & 17.025 & \(n / d\) & n/d & 22.914 & n/a & \(n / 3\) & \(n / d\) & \(n / 2\) & n/a \\
\hline 1966 & 20.000 & n/d & n/a & 26.042 & n/d & n/d & n/d & \(n / 2\) & n/a \\
\hline 1967 & 28.431 & n/d & n/d & 35.989 & n/d & n/i & n/d & n/d & n/a \\
\hline 1968 & 38.587 & n/d & n/d & 46.715 & n/d & n/d & n/d & n/a & n/a \\
\hline 1969 & 38.938 & n/d & n/d & 44.911 & n/d & n/d & n/d & n/a & n/d \\
\hline 1970 & 44.383 & \(n /\) d & \(n / d\) & 48.559 & \(n / d\) & n/d & n/d & n/a & n/d \\
\hline 1971 & 51.375 & n/d & n/d & 53.516 & n/d & n/d & n/d & n/d & n/2 \\
\hline 1972 & 51.983 & 37.822 & 20.161 & 57.983 & 37.822 & 20.161 & 98 & 113 & 79 \\
\hline 1973 & 61.514 & 45.072 & 16.442 & 58.142 & 42.601 & 15.541 & 98 & 127 & 61 \\
\hline 1974 & 63.447 & 46.054 & 17,393 & 54,696 & 39.702 & 14.994 & 92 & 118 & 58 \\
\hline 1975 & 68.749 & 47.960 & 20.789 & 54.048 & 37.704 & 16.349 & 101 & 117 & 71 \\
\hline 1976 & 66.239 & 47.720 & 18.519 & 49.469 & 35.639 & 13.830 & 92 & 111 & 65 \\
\hline 1977 & 61.922 & 44.225 & 17.697 & 43.699 & 31.210 & 12.489 & 82 & 97 & 58 \\
\hline 1978 & 66.900 & 49.857 & 17.043 & 43.999 & 32.790 & 11.209 & 78 & 99 & 49 \\
\hline 1979 & 74.464 & 56.638 & 17.826 & 45.004 & 34.231 & 10.774 & 80 & 103 & 46 \\
\hline 1980 & 88.548 & 65.966 & 22.582 & 49.629 & 36.972 & 12.657 & 88 & 111 & 55 \\
\hline 1981 & 94.986 & 69.818 & 25.168 & 48.676 & 35.778 & 12.897 & 85 & 108 & 56 \\
\hline 1982 & 79.335 & 51.189 & 28.146 & 38.348 & 24.743 & 13.605 & 68 & 15 & 59 \\
\hline 1983 & 76.869 & 52.225 & 24.644 & 35.649 & 24.220 & 11.429 & 63 & 73 & 49 \\
\hline
\end{tabular}
- \(/\) Figures for even years from 1964-70 and for all years from 1972-83 were obtained from the National Science Foundation (1975-85). The 1978 figures are NSF estimates. Those for other years were estimated by the comittee. Items may not sum to totals due to rounding.
b/1972 dollars were obtained by using the Implicit GNP Price Defletor (U.S. Bureau of the Census--see Appendix Table (18). Itens may not sum to totals due to rounding.
-/ See Appendix Table Cl9 for number of schools reporting.

APPENDIX TABLE C22 Graduate Eirollmint in the Rehavioral Sciences, by Sex, 1967.89 (percent of field totaly-
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{2}{|l|}{All Behav. Sci.} & \multicolumn{2}{|l|}{Psychology} & \multicolumn{2}{|l|}{Sociology} & \multicolumn{2}{|l|}{Anthropology} & \multicolumn{2}{|l|}{Socio./Anthro.} & \multicolumn{2}{|l|}{Spch.Path./Audio.} \\
\hline & Male & Female \\
\hline 1967 & 68.4 & 31.6 & 70.2 & 29.8 & 66.8 & 33.2 & 62.3 & 37.7 & & & & \\
\hline 1968 & 67.0 & 33.0 & 67.6 & 32.4 & 67.6 & 32.4 & 61.6 & 38.4 & & & & \\
\hline 1269 & 64.9 & 35.1 & 66.2 & 33.8 & 64.4 & 35.6 & 58.6 & 41,4 & & & & \\
\hline 1970 & 64.1 & 35.9 & 65.6 & 34.4 & 63.4 & 36.6 & 57.2 & 42.8 & & & & \\
\hline 1971 & 62.6 & 37.4 & 63.5 & 36.5 & 62.6 & 37.4 & 57.8 & 42.2 & & & & \\
\hline 1972 & 59.9 & 40.1 & 63.4 & 36.6 & 61.9 & 38.1 & 58.3 & 41.7 & & & 22.6 & 77.4 \\
\hline 1973 & 58.0 & 42.0 & 61.6 & 38.4 & 60.4 & 39.6 & 56.9 & 43.1 & & & 21.3 & 78.7 \\
\hline 1974 & 55.8 & 14.2 & 60.1 & 40.0 & 59.6 & 40.4 & 54.0 & 46.0 & & & 20.8 & 79.2 \\
\hline 1975 & 52.4 & 47.6 & 57.4 & 42.6 & 58.0 & 42.0 & 52.9 & 47.1 & & & 16.8 & 83.2 \\
\hline 1976 & 50.3 & 49.7 & 55.2 & 44.8 & 56.4 & 43.6 & 52.9 & 47.1 & & & 15.6 & 84.4 \\
\hline 1977 & 47.8 & 52.2 & 52.8 & 47.2 & 54.1 & 45.9 & 50.0 & 50.0 & & & 13.2 & 86.8 \\
\hline 1978 & 49,4 & 50.6 & 53.1 & 46.9 & 54.5 & 45.5 & 50.3 & 49.7 & 64.4 & 35.6 & 23.0 & 71.0 \\
\hline 1979 & 47.3 & 52.7 & 50.9 & 49.1 & 53.3 & 46.7 & 49.6 & 50.4 & 59.3 & 40.7 & 19.9 & 80.1 \\
\hline 1980 & 45.2 & 54.8 & 48.8 & 51.2 & 52.0 & 48.0 & 48.9 & 51.1 & 53.6 & 46.4 & 16.9 & 83.1 \\
\hline 1981 & 43.2 & 56.8 & 46.8 & 53.2 & 49.8 & 50.2 & 47.6 & 52.4 & 53.7 & 46.3 & 15,3 & 84,7 \\
\hline 1982 & 40.7 & 59.3 & 44.0 & 56.0 & 48.4 & 51.6 & 45.6 & 54.4 & 49.0 & 51.0 & 13.8 & 86.2 \\
\hline 1983 & 39.3 & 60.7 & 42.3 & 57.7 & 46.6 & 53.4 & 45.0 & 55.0 & 48.8 & 51.2 & 14.1 & 85.9 \\
\hline 1984 & 37.9 & 62.1 & 40.6 & 59.4 & 47.0 & 53.0 & 43.3 & 56.7 & 49.3 & 50.7 & 13.5 & 86.5 \\
\hline
\end{tabular}

2/Percents for 1967-77 are based on figures from the U.S. Department of Education (1959-79). Those for 1978-84 are based on figures from the National Science Foundation (1973-95a). See Appendix Tables Cl and Ca-8 for supporting data.
b/This interdisciplinary field is reported separately from sociolooy and anthropology ty "he National Science Foundation.

APPENDIX TABLE C23 Graduate School Attrition Rates in the Behavioral Sciences, 1960-71
\begin{tabular}{|c|c|c|c|c|}
\hline Fiscal Year of Graduate School Entry & First-Year Griduate Enrollment in the Behavl. Sci. \(\sqrt{2}\) & Number of FY1958-89 Behavioral SCi, Ph.D. 5 Entering Grad. Schoolb & Ph.D. Completion Rate \((\%)[5\) & Graduate School Attrition Rate ( \(\left.\boldsymbol{n}^{\circ}\right)\) C \\
\hline 1950 & 5,188 & 1,766 & 28.5 & 11.5 \\
\hline 1961 & 7,732 & 2,017 & 26.1 & 73.9 \\
\hline 1962 & 8,038 & 2,147 & 26.7 & 73.3 \\
\hline 1963 & 8,739 & 2,393 & 27.4 & 12.6 \\
\hline 1964 & 9,288 & 2,853 & 30.7 & 69.3 \\
\hline 1965 & 11,832 & 3,275 & 27.7 & 72.3 \\
\hline 1966 & 13,659 & 3,692 & 27.0 & 73.0 \\
\hline 1967 & 13,659 & 3,907 & 28.6 & 71.4 \\
\hline 1968 & 15,966 & 3,840 & 24.1 & I. \\
\hline 1969 & 16,831 & 3,849 & 22.9 & \\
\hline 1970 & 19,501 & 4,297 & 22.0 & \\
\hline 1971 & 22,709 & 4,398 & 19.4 & \\
\hline Pre-1960 & & 13,416 & & \\
\hline Post-1971 & & 23,363 & & \\
\hline
\end{tabular}
a/From the U.S. Departnent of Edulition (1959-79).
\(\frac{b}{6}\) From the National Research Council (1956-85).
C/The Ph.D. completion rate represents the percentage of first-year graduate students in a given year who earned a Ph.D. between 1958 and 1984 (column 2/column 1). The attrition rate is obtained by subtracting the Ph.D. completion rate for a given year from \(100,0 \%\). The rates for \(1900-67\) show little yariation, indicating that most individuals entering graduate school during that period had either received a ph.0. or dropped out of graduate school by 1984. For 1968-71, however, the Ph. D . completion rates dec line with each year, The attrition rates for these years undoubtedly include students who are still enrolled in graduate school but who had not earned a Ph.D. by 1984, as well as those who had actually dropped out of graduate school. The Ph. O, completion rates will most likely increase and the attrition rates decrease once 9985 Ph.0.s are added to the calculations, and should continue to do so with the inclusion of each additional year of Ph.O.s. For this reason, we have not calculated the attrition rates after 1967.

APPENOIX TABLE C24 Actual and Projected Age Distribution of Academically Employed Behavorial Science Phi. sol



a/The data for 1977-83 were obtained from the National Research Council (1973-84). Projections were computed by the committee.

\author{
APPENDIX D \\ Miscellaneous Data
}
TABLE DID2D3NRSA Training Expenditures as a Percentageof NIH/ADAMHA/HRSA Research Obligations,1971-83 (\$ millions)235
D4 Classifications of Fields ..... 236

APPENDIX TABLE DI Estimates of the Total Population of the United States, by Age Group, 1971-2081]
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fiscal Year} & \multicolumn{3}{|l|}{Age Group} \\
\hline & 15-19 Years & 20-24 Years & 25-29 Years \\
\hline 1971 & 19,333 & 17,202 & 13,736 \\
\hline 1972 & 19,789 & 18,159 & 14,041 \\
\hline 1973 & 20,296 & 18,153 & 15,240 \\
\hline 1974 & 20,719 & 18,521 & 15,786 \\
\hline 1975 & 21,042 & 18,975 & 16,521 \\
\hline 1976 & 21,285 & 19,527 & 17,280 \\
\hline 1977 & 21,534 & 19,986 & 18,274 \\
\hline 1978 & 21,540 & 20,499 & 18,277 \\
\hline 1979 & 21,496 & 20,946 & 18,683 \\
\hline 1980 & 21,402 & 21,297 & 19,178 \\
\hline 1981 & 21,123 & 21,605 & 19,763 \\
\hline 1982 & 20,433 & 21,938 & 20,173 \\
\hline 1983 & 19,845 & 21,935 & 20,769 \\
\hline \multicolumn{4}{|l|}{(Projected - Middle Series)} \\
\hline 1984 & 19,180 & 21,871 & 21,170 \\
\hline 1985 & 18,658 & 21,706 & 21,527 \\
\hline 1986 & 18,416 & 21,301 & 21,838 \\
\hline 1987 & 18,419 & 20,600 & 22,166 \\
\hline 1988 & 18,192 & 19,999 & 22,151 \\
\hline 1989 & 17,934 & 19,338 & 22,088 \\
\hline 1990 & 17,465 & 18,820 & 21,925 \\
\hline 1991 & 16,968 & 18,580 & 21,522 \\
\hline 1996 & 16,968 & 17,142 & 18,822 \\
\hline 2001 & 18,943 & 17,145 & 17,396 \\
\hline 2006 & 19,689 & 19,113 & 17,403 \\
\hline 2011 & 19,114 & 19,857 & 19,362 \\
\hline 2016 & 18,133 & 19,285 & 20, 102 \\
\hline 2021 & 17,958 & 18,308 & 19,533 \\
\hline 2026 & 18,481 & 18,135 & 18,562 \\
\hline 2031 & 18,948 & 18,654 & 18,389 \\
\hline 2036 & 18,863 & 19,120 & 18,906 \\
\hline 2041 & 18,465 & 19,035 & 19,370 \\
\hline 2046 & 18,205 & 18,640 & 19,286 \\
\hline 2051 & 18,251 & 18,381 & 18,892 \\
\hline 2056 & 18,393 & 18,426 & 18,635 \\
\hline 2061 & 18,377 & 18,568 & 18,681 \\
\hline 2066 & 18,177 & 18,552 & 18,822 \\
\hline 2071 & 17,985 & 18,353 & 18,806 \\
\hline 2076 & 17,926 & 18,162 & 18,608 \\
\hline 2081 & 17,940 & 18,103 & 18,418 \\
\hline
\end{tabular}
a/From the U.S. Bureau of the Census (1965-84). Includes armed forces overseas.

APPENDIX iABLE D2 NIH/ADAMA/HRSA Expendtures for Research Training Programs, \(1971-83\) ( f millions)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|l|}{Total MIH/ADAMA/HRSA} & \multicolumn{5}{|l|}{Nint/} & \multicolumn{5}{|l|}{AOAHA \({ }^{\text {b/ }}\)} & \multicolumn{5}{|l|}{HRSA, Divis ion of Nursing \({ }^{\text {d }}\)} \\
\hline & \multicolumn{2}{|l|}{Iotal Amount} & \multicolumn{2}{|l|}{Fellowhhips} & \multicolumn{2}{|l|}{Troining Grants} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Total \\
Anount Fellowships
\end{tabular}} & \multicolumn{2}{|l|}{Training Gronts} & \multirow[t]{2}{*}{\begin{tabular}{l}
Totd \\
Amount \\
Current 1
\end{tabular}} & \multicolumn{2}{|l|}{Fellouships} & \multicolumn{2}{|l|}{Iraining Grants} & \multirow[t]{2}{*}{\begin{tabular}{l}
Totd 1 Amount \\
Current \(\$\)
\end{tabular}} & \multicolumn{2}{|l|}{Fellowships} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Troining \\
Grants
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { Fiscal } \\
& \text { Year } \\
& \hline
\end{aligned}
\] &  & Current & & & & Ant. & \[
\underset{\}}{\text { Curren }}
\] & 1 & Ant. & 1 & Amt. & & 1 & Amt. & 1 & Amt. & & 1 & Ant. & 1 & Amt. \\
\hline 1971 & 178.6 & 111.5 & & & & & 152.9 & 2,718 & 23.8 & 2,111 & 1129.1 & 16.7 & n/s & n/d & n/d & n/s & 1.9 & 183 & 0.9 & 9 & 1.0 \\
\hline 1972 & 178.1 & 178.1 & & & & & 157.6 & 2,264 & 21.5 & 2,024 & 136.1 & 19.2 & n/8 & n/d & n/d & n/8 & 1.3 & 146 & 0.6 & 9 & 0.7 \\
\hline 1973 & 120.2 & 127.2 & - & & & & 115.3 & 1,233 & 12.2 & 1,996 & 103.1 & 10.3 & n/d & n/d & n/d & n/8 & 1.6 & 136 & 0.6 & 10 & 1.0 \\
\hline 1974 & 199.2 & 201.9 & & & & - & 186.5 & 2,267 & 30.6 & 2,922 & 155.9 & 20.1 & n/a & n/d & n/d & n/8 & 1.3 & 115 & 0.6 & & 0.7 \\
\hline 1975 & 139.2 & 11.1 & 2,657 & 34.1 & 1,979 & 14.0 & 156.8 & 2,056 & 27.8 & 1,139 & 129.0 & 19.7 & 570 & 6.1 & 232 & 13.6 & 0.6 & I & 0.2 & 8 & 0.4 \\
\hline 1976 & 105.1 & 191.6 & 2.107 & 27.9 & 1,570 & 113.7 & 122.0 & 1,652 & 23.2 & 1,399 & 98.8 & 19.4 & 414 & 4.6 & 230 & 14.8 & 0.16 & 41 & 0.08 & & 0.08 \\
\hline 1971 & 105.4 & 149.4 & 2,389 & 31.2 & 1,426 & 118.2 & 130.4 & 1,975 & 27.3 & 1,200 & 103.1 & 18.2 & 318 & 3,3 & 223 & 14.9 & 0.8 & 96 & 0.6 & 3 & 0.2 \\
\hline 1978 & 108.6 & 165.1 & 2,423 & 32.8 & 1,551 & 132.2 & 147.2 & 2,070 & 29.1 & 1,321 & 117.4 & 16.9 & 231 & 2.3 & 227 & 14.6 & 1.0 & 122 & 0.8 & & 0.2 \\
\hline 1979 & 100.4 & 166.2 & 2,539 & 34.9 & 1,466 & 131.2 & 148.0 & 2,208 & 31.8 & 1,256 & 116.1 & 17.2 & 219 & 2.3 & 207 & 14.9 & 1.0 & 112 & 0.8 & 3 & 0.2 \\
\hline 1980 & 113.9 & 202.1 & 2,258 & 42.4 & 1,178 & 159.7 & 181.1 & 1,973 & 38.9 & 1,505 & 142.2 & 20.0 & 190 & 2.15 & 210 & 17.2 & 0.99 & 95 & 0.7 & 3 & 0.1 \\
\hline 1981 & 104.5 & 202.2 & & & 1,560 & 162.8 & 180.4 & 1,752 & 35.5 & & & 20.8 & 205 & 3.0 & 200 & 17.8 & & 115 & 0.9 & & 0.1 \\
\hline 1982 & 83.9 & 173.6 & 1,997 & 34.3 & 1,65 & 139.2 & 155.4 & 1,726 & 31.2 & 1,285 & 124.2 & 17.2 & 151 & 2.1 & 180 & 15.0 & 0.96 & 120 & 0.9 & 0 & 0.0 \\
\hline 1983 & 87.4 & 188.5 & 2,023 & 37.2 & 1,511 & 15.8 & 170.4 & 1,756 & 34.4 & 1,331 & 136.0 & 17.1 & 155 & 2.3 & 180 & 14.8 & 0.96 & 112 & 0.9 & 0 & 0.0 \\
\hline
\end{tabular}
d/From Nith (1966-84, 1984 euilion, p. 17), J. • d. a MaRC Honors Undergraduate tralnees,
b/Figures for \(1971-74\) vers obtained from kin's', '3-81, 1980 edition, p. 33); flgures for \(1975-83\) were from special tabulations prepared annually by ADANth, Office of the hamin'strator. Inclu. "sro Hono:s Undergraduate trainees.
C/From HRSA, Division of Hursine, Figures for mil. 75 represent Special Murse Research Fellowship and Nurse Scientist Training Grant Programs. Figures for 1977-83 were obtained from HRSA, Divislon of Nui Ing. Authority for MRSA research training programs in the Division of Nursing began in FY ig7i.
d/obtained by using the Implicit GNP Price Deflator (U.S. Buresu of the Census--see Appendix Table 日7).

APPENUIX TABLE D3 NRSA Training Expenditures as a Percentage of NiH/HOAMA/HRSA Research Obligations, 1971 -83 (\$ millions)/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{Total NIH/ADAHHA/HRSA} & \multicolumn{3}{|l|}{NHH/} & \multicolumn{3}{|l|}{ADAHIAC/} & \multicolumn{3}{|l|}{HRSA, Division of Mursing d/} \\
\hline Fiscal Year & Research
\[
\$
\] & \[
\begin{gathered}
\text { Training } \\
\hline
\end{gathered}
\] & \(\%\) of Research \$ & \[
\stackrel{\text { Research }}{\substack{\text { Ren } \\ \hline}}
\] & \[
\begin{gathered}
\text { Training } \\
\hline \\
\hline
\end{gathered}
\] & \% of Research \(\$\) & \[
\stackrel{\text { Research }}{8}
\] & \[
\begin{gathered}
\text { Training } \\
1 \\
\hline
\end{gathered}
\] & \% of Research \(\$\) & \[
\begin{gathered}
\text { Research } \\
\wp
\end{gathered}
\] & Training & \begin{tabular}{l}
\% of \\
Researcin 5
\end{tabular} \\
\hline 1971 & 960.7 & 171.5 & 17.9 & 882.7 & 152.9 & 18.1 & 116.0 & 16.7 & 14.4 & 2.0 & 1.9 & 95.0 \\
\hline 1972 & 1,173.8 & 178.1 & 15.2 & 1,041.1 & 157.6 & 15.1 & 130.3 & 19,2 & 14.7 & 2.4 & 1.3 & 54.2 \\
\hline 1973 & 1,205.6 & 127.2 & 10.6 & 1,081.4 & 115.3 & 10.7 & 121.7 & 10.3 & 8.5 & 2.5 & 1.6 & 64.0 \\
\hline 1974 & 1,607.2 & 207.9 & 12.9 & 1,449,3 & 186.5 & 12.9 & 155.3 & 20.1 & 12.9 & 2.6 & 1.3 & 50.0 \\
\hline 1975 & 1,679.4 & 177.1 & 10.5 & 1,536,9 & 156,8 & 10.2 & 139.1 & 19.7 & 14.2 & 3.4 & 0.6 & 17,6 \\
\hline 1976 & 1,854.2 & 141.6 & 7.6 & 1,678.2 & 122.0 & 1.3 & 173.2 & 19.4 & 11.2 & 2.8 & 0.16 & 5.7 \\
\hline 1977 & 2,011.2 & 148,6 & 7.4 & 1,853.4 & 130.4 & 1.0 & 152.8 & 18.2 & 11.5 & 5.0 & 0.8 & 5.7
16.0 \\
\hline 1978 & 2,244.9 & 164.1 & 7.3 & 2,078.6 & 147.2 & 7.1 & 161.3 & 16.9 & 10.5 & 5.0 & 1.0 & 20.0 \\
\hline 1979 & 2,613.9 & 165,2 & 6.3 & 2,413,0 & 148.0 & 6.1 & 196.0 & 17.2 & 8.8 & 4.9 & 1.0 & 20.4 \\
\hline 1980 & 2,796.0 & 201.1 & 7.2 & 2,579.3 & 181.1 & 7.0 & 211.7 & 20.0 & 9.4 & 5.0 & 1.0 & 20.0
20.0 \\
\hline 1981 & 2,897.8 & 201.2 & 6.9 & 2,686.1 & 180.4 & 6.7 & 206.7 & 20.8 & 10.1 & 5.0 & 1.0 & 20.0 \\
\hline 1982 & 2,959.4 & 173, 6 & 5.9 & 2,753.5 & 155.4 & 5.6 & 202.5 & 17.2 & 8.5 & 3.4 & 1.0 & 29.4 \\
\hline 1983 & 3,297,0 & 188.5 & 5.7 & 3,058.8 & 170.4 & 5.6 & 233.2 & 17.1 & 1.3 & 5.0 & 1.0 & 20.0 \\
\hline
\end{tabular}
- /Research obligations represent grants and contracts,
b/From NiH (1966-84, 1982-84 editions).
cl: ADAHA (1978-83, FY 1980-83 editions).
df. ed from annual repcrts provided by HRSA, Division of Nursing.

\section*{APPENDIX TABLE D4 Classifications of Fields}


\section*{APPENDIX TABLE D4 Classifications of Fields (Continued)}
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{NLH}^{\circ}\) & ADAMHA \({ }^{\text {r }}\) & NAS \({ }^{\text {d }}\) \\
\hline BEHAVIORAL SCIENCES & BEHAVIORAL SCIENCES & BEHAVIORAL SCIENCES \\
\hline Psycholog. & Psycholog.' & Psychology \\
\hline Geperal and Experimental & E:perimental and General & General \\
\hline Comparative and Animal & Psychophysics & Clinie: \\
\hline Physiological & Physiological Psychology and & Cogniture \\
\hline Developmental & Psychobiology & Counseling and Guidance \\
\hline Personality & Developmental and Child & Developmertal and Gerontological \\
\hline Social-Psychological Aspects & Personality & Educational \\
\hline Abnormal & Social & School \\
\hline Clinical & Community and Ecological & Experimental \\
\hline Education, Crunseling, and Guidance & & Comparative \\
\hline Other Psychological & Other Behavioral Sciences & Ptysiologizal \\
\hline Other Behovioral Sciences & Health Administration and Public Health Education and Guidance & Pyychometrics Quantitative \\
\hline Sociology & Sociology & Sccial \\
\hline Social Psychology-Sociological Aspects & Demography or Population Dynamics & Industrial and Organizational Personality \\
\hline Anthropology & Anthropology & Personality \\
\hline Social Sciences and Related Disciplines & Linguistics & Human Engineering \\
\hline Other Fields & Social Sciences and Related Disciplines Economics & Behavior/Ethology Other Psychology \\
\hline CLINICAL SCIENCES & Political Science & \\
\hline Internal Medicine & Biocthics & Other Behavioral Sciences \\
\hline Allergy & Social/Behavioral Sciences & Anthropolo \\
\hline Pediatrics & CLINICAL SCIENCES & \begin{tabular}{l}
Sociology \\
Audiology and Speech Pathology
\end{tabular} \\
\hline Geriatrics & CLNICAL SCIENCES & Audiology and Speech Pathology \\
\hline Obstetrics-Gynecology & Psychiatry & \\
\hline Radiology & Other Clinical Medicine & \\
\hline Surgery & Nursing & \\
\hline Otorhinolaryngology & Social Work & \\
\hline Ophthalmology & Clinical Psychology & \\
\hline \multicolumn{3}{|l|}{Anesthesiology} \\
\hline \multicolumn{3}{|l|}{Neuropsychiatry} \\
\hline \multicolumn{3}{|l|}{Neurology} \\
\hline \multicolumn{3}{|l|}{Psychiatry} \\
\hline \multicolumn{3}{|l|}{Preventive Medicine} \\
\hline \multicolumn{3}{|l|}{Other Clinical Medicine} \\
\hline \multicolumn{3}{|l|}{Veterinar) Widicise} \\
\hline Clinical Dintists, & & \\
\hline
\end{tabular}

NURSING RESEARCH

\footnotetext{
* These fields correspond to those defined is the commitue as the Basic Biomedical Sciences. See NRC (1975-81, 1977 Repen. p. 29).
- Since 19*2. NIH has used a classification sci... ine called the Discipline/Specialty/Field Code (DSF) to classify areas of training for its trainecs and fellows. The major categories of that schelite are shown in this table. They have been grouped into 4 oroad areas of research that the committee has established for purposes of this srudy.
\(b\) Most of the trainees in the Medical Scientist Training Program are classified in this categoty.
c These fields represent the lexicon established by ADAMHA to classify areas of training for its :.WRSA t. ynees and fellows.
d These fields are used by the National Research Council's Survey of Doctorates and Survey oi Doctorate Rexipients to identify fields of Ph.D. specialization and fields of employment.
}

\section*{APPENDIX E}

Biotechnology Survey Questionnaire and Summary of Responses

\section*{Dear Colleague:}

The Congress has asked the National Academy of Sciences (NAS) to determine the nation's need for research personnel in the wiomedical and behavioral fields. As a member of the NAS' Committee on National Needs for Biomedical and Behavioral Research Personnel, I am particularly concerned that there be an adequate number of people trained in areas of the new biotechnology.

In collaboration with the American Society for Microbiology (ASM), I am writing to ask your assistance in collecting some information on this issue. You could help us areatly in our efforts to get a profile of current employment opportunities and a sense of fu'dre demand in biotechnology and related industries by responding to the three questions on the attached page. To be useful in our report to the Conaress, we need your answers as soon as possible. The tabulated data from the questionnaire will be published. Only ASM and the NAS Committee will have access to the individual responses.

If you have additional comments or suggestions that you think would assist us, please include them with your response. A self-addressed envelope is enclosed. Also, if you have any questions concerning the questionnaire, don't hesitate to call me at (607) 256-2364.

With thanks for your help.

Yours sincerely,

Robert ark
Provost
Cornell University

Enc.

CONPANY NAME AND ADDRESS:

PERSON COAPLETING THIS FORH:
Name:
Phone Wunber:

For the purpose of titis questionnaire, Biotechnology is def ined as the application of nove: ,iological strategies (roxA, cell-fusion, mobilized cells or enzymes) for biochemical processing.
please include any COWEHTS ON REVERSE
1. Is your company currently involved in any aspect of biotechnology as defined whive? Yes 147 mo 27. If yes, please indicate the year started in blotechnology, complete this questionnaire, and reium in thei self-rddressed enveloped, Year biotechnology activities started \(\qquad\) . If not, indicate above and return the un:ompleted form.
2. Please check all areas of biotechnology application in which your company is involved:
a) 48 fine chemicals
e) 27 blamass conversion
i) 18 pollution control
b) 25 bulk chenicals
f) 68 humen diagnostics
j) TO enhanced oil recovery
c) 60 pharmaceuticals
g) 39 plant agriculture
d) 73 animal agriculture
h) \(工\) mineral leaching \(\&\) mining
k) 45 other; specify \(\qquad\)
3.
(1) Check if you are experiencing per-
somnel shortages
in any of these
specialties

\(\left.\right|^{(2)}\)
(2) No. scientists currently on staff (list each employee only once). \begin{tabular}{l|l|l|l|}
\hline Ph.D. & MS & BS & Total \\
\hline
\end{tabular}
\(\left|\begin{array}{l}\text { (3) Expected No, } \\ \text { of scientists } \\ \text { to be hired in } \\ \text { next } 18 \text { months } \\ \text { Ph,O. } \mid \text { MS } \mid \text { BS } \mid \text { Total }\end{array}\right|\)
(4) For vacant positions, do you expect to:
Hire
from
Hire
from
Industry
Retrain
Acadenila Staff
(Check applic. boxes)

1061 多 \(\begin{array}{lll}538 & \text { d }\end{array}\) 176
15

\section*{APPENDIX F}

\section*{Summary of Public Meeting, May 10, 1984}

The committee held a public meeting on May 10 , 1984 to receive comments from the scientific community on issues discussed in the 1983 report. Fifteen witnesses presented statements. Their names and those of the organizations they represented are listed below in order of appearance:

\section*{Speaker}
1. Elizabeth Short
2. Stanley Hazen
3. Emanuel Donchin
4. Michael Pallak
5. Robert Carson
6. Myron Genel
7. William McGivney
8. Barbara Redman
9. Gerald D. Shockman
10. Lir, 2a Rabin
11. Gordon Kaye
12. George Bohrnstedt
13. Matthew J. Freund and Donald W. Light
14. William Jolly
15. John Marshall

\section*{Organization}

Association of American Medical Colleges
American Association for Dental Research
Federation of Behavioral, Psychological and Cognitive Sciences
American Psychological Association
Council of Graduate Departments of Psychology
Association of program Directors, General Clinical Research Centers
American Medical Association
American Association of Colleges of Nursing
American Society for Microbiology
Association of Teachers of preventive Medicine
Association of Anatomy Chairmen
professor and Chairman of Sociology, Indiana University
American Association of Colleges of Osteopathic Medicine
American Institute of Biological Sciences
National Center for Health Services Research

Summaries of each presentation are provided below. The complete statement of each speaker is available upon request to the committee.

\section*{Elizabeth Short, M.D.}
1. The appropriateness of a market model for estimating demand for researchers requires no justification. It is regrettable, however, that personnel requirements cannot be defined realistically to reflect revolutionary opportunities in biomedical science.
2. The market for basic scientists in clinical departments of medical schools should continue to be monitored closely by the committee.
3. NIH-supported post M.D. trainees/fellows who have not sought faculty positions may be involved in formal clinical trials, and hence, may not have been lost to research. This may account in part for tri: cunsistent increase of physician-researchers reported by AMA since 1975.
4. It. will becr.ne more difficult to project practice income in :edical schools, owing to the uncertain impact of the DRG-based prospective pricing system and its extension to non-Medicare beneficiaries.
5. In estimating needs for trainees in the clinical sciences, why not, as a parameter, substitute for the 35 percent of M.D. faculty accessions who have had postdoctoral research training the 63 percent of M.D. faculty shown by the Faculty Roster to be doing at least some (l0 percent or more of professional time) research?
6. The committee's suggestions for monitoring the clinical investigator pool,. . . i.e. establishment of a computerized roster. . . seem worthwhile.
7. The use of a 2-year postdoctoral research training period for physicians-scientists in estimating the recommended number of clinical sciences trainees should be reexamined for the 1985 Report. The increasing sophistication of biomedical research would seem to demand a longer apprenticeship.

Stanley Hazen, D.D.S.
Dr. Hazen lauded the committee's current concern with training needs in dental research. He urged that special consideration be given to the following issues:
1. Extension of eligibility to dental schools to participate in the MST program.
2. Increase of stipends for dental and medical trainees in short-term research training (T-35) programs.
3. Permitting dental students to spread 3-month short-term research training over an entire academic year.
4. Establishment of a 5-year training program to produce dentist-scientists.

Emanuel Donchin, Ph.D.
1. The committee's recommendation that the erosion of predoctoral training be halted was strongly endor: .
2. The Federation hoped that the committee, in the development of future recommendations, would extend the interpretation of its charge beyond a market analysis of the availability of jobs. That emphasis consecrates the status quo, and it provides a poor guide for planning an educational enterprise whose time constant is measured in decades.
3. The committee was asked to undertake a close examination of alternate data bases, with specific emphasis on disaggregating data in order to determine the state of affairs in different disciplines and across different classes of institutions. With respect to levels of quality, he noted that the data on hand aggregate the statistics for all Ph.D.-granting institutions, whereas the bulk of active researchers in the behavioral sciences have been trained in a relatively small number of institutions.
4. The committee should consider the consequences of its recommendations as a critical aspect of its work. Response by NIH/ADAMHA to the recommendacions should be carefully monitored. In addition, the agencies, the public, and Congress should be alerted to dangerous trends that may occur as the unintended results of a rigid and inadequately funded implementation of its reports. The Federation pledges its readiness to cooperate in assessing the impact of various training support policies.

Michael S. Pallak, Ph.D.
1. The Association believes that the committee's charge includes a responsibility to inform Congress explicitly regarding the implications for research training inherent in levels of funding below those needed to implement NAS recommendations.
2. Some seven months after release of the 1983 report, the agencies appear to have taken no steps in the direction of making available the 650 predoctoral and 540 postdoctoral awards recommended by the committee in the behavioral sciences field.
3. The estimated number of predoctoral awards available for 1983 was 475, which is far short of the actual number in 1981 (639) and the number recommended for 1987 (650). The 475 awards, however, include about 100 awards to undergraduate students, which should not be equated with support for predoctoral research training in behavioral sciences. The committee should request that agency data on predoctoral awards be broken down by graduate and undergraduate categories.
4. It was suggested that postdoctoral data provided to the committee by NIH/ADAMHA be arrayed by length of award. An undetermined number of the postdoctoral awardees in 1983 were short-term trainees...i.e., support for a period of three months.
5. Except for the foregoing concerns about implementation, the Association fully supports the committee's 1983 recommendations.

Robert Carson, Ph.D.
Dr. Carson lauded the committee's recommendation for a return to the 1981 level of predoctoral trainees. He suggested the following:
1. Against the certainty of insufficient funds to achieve NAS target figures, the committee nevertheless should set a priority on an immediate increase in predoctoral awards.
2. The Council disparages the committee's reliance on market analysis. Preferably, tra committee should attempt to assess personnel needs necessary to exploit knowledge gains in areas that will be important in the future.
3. There is justification for considering psychology separately from other behavioral science disciplines in the committee's analyses and recommendations.
4. Incentives should be provided for ph.D.s to pursue medical training through a program similar to that of tice new Physician Scientist Award. Provision of clinical training for Ph.D.s with backgrounds in behavioral science also merits consideration.
5. Regardless of changes in tiee number of undergraduate psychology majors, enrollment in psychology courses remains constant. Moreover, the reported decline in majors can be ascribed to the choice of a date for baseline. For example, psychology majors were at an all-time high during the early to mid-70s, owing to "an excessively romanticized humanism" in that era.

Myron Genel, M.D.
1. The committee should pay particular attention to the unique problems and patterns of research and training that pertain to "true" clinical research.....i.e., first two categories in the Landau typology.
2. The committee's recommendations should be intexpreted with an awarenese that the NIH-IMPAC classification of research with human subjects does not distinguish the subset involving a significant "hands on" physician-subject interaction.
3. The Cuca study in the October 1983 issue of Clinical Research, which deals with difficulties in obtaining grant support for human subjects research underscores the need for more rigorous training of young physicians embarking upon a research career. The GCRC's Clinical Associate Physician program was described as response to that need.
4. Also needed are more innovative approaches to research training. For example, programs should incorporate a core curiiculum in experimental design, data analysis, computer science, and basic laboratory methods applicable to human subjects studies of almost any \(k\) ind and subspecialty interest.
5. Also meriting attention in this connection is a new training program at Yale, which is funded by NIADDK and NICHHD. The committee should also monitor the pilot programs at the University of Michigan's School of of Public Health and the Mayo Graduate School of Medicine.
6. The Association will be pleased to share with the committee the conclusions and recommendations emerging from its November 1984 conference on training and sustaining clinical investigators. Among the participants will be Dr. William N. Kelley and Dr. James B. Wyngaarden.

\section*{William McGivney, Ph.D.}

Representing the American Medical Association, Mr. McGivney excolled the 1983 Report. He expressed agreement with the recommendations for the basic biomedical and clinical sciences fields, including the committee's observations on employment of bioscientists in the nonacademic sectors. He stressed the role of adequate and long-range federal support as a means of influencing the selection of biomedical research career paths by young scientists.

Barbara Redman, Ph.D.
1. Commends the committee for a comprehensive and useful report.
2. Only a tiny proportion of national expenditures for biomedical research and training is dedicated to research on nursing problems.
3. Nursing research deals with sleep disruption, pain reduction, and stress management among other things, and has produced findings that have improved patient care while effecting significant savings.
4. Hospital acquired infections are a substantial health problem. Infection control practitioners ( 75 percent of whom are nurses) were proven effective in decreasing the occurence of these infections in a recent study.
5. Support for nursing doctoral education is crucial to nursing research. A recent study showed an unmet need for 1,623 doctorally prepared nurse faculty.
6. The number of NRSA fellowships in nursing research should be increased to 500 per year, the number of traineeships for graduate nursing students should be increased, and grants for nursing research should be increased to a comparable level with other types of research.

Sexeld D. Shockman, Ph.D.
1. Demand data from the survey of the biotechnology industry, cosponsored by the IONi committee and the Congressional Office of Technology Assessment, taken together with NSF data on manpower supply, denonstrate a "current shortage of certain types of biomedical scientists." The same data also justify concern that the shortage will worsen, unless remedial. steps are quickly taken.
2. In addition to microbiology/immunology, similar markef force: relevant to the new biotechnology are observable in several other biomedical science disciplines.... i.e., cell biology. genetics, biochemistry.
3. The shortages foreshadow harm to research and graduate education in the biomedical sciences, and will ultimately erode the U.S. position in international biotechnology competition. The quality and ouantity of faculty required to train a competent work force are points of particular vulnerability.
4. Aside from increases in trainees/fellows at the predoctoral and postdoctoral levels, a major push is called for to enhance the prestige and rewards of academic employment in these fields. Competition for the best minds is not only with the medical schools, but increasingly with industry.
5. Anecdotal "data" suggest that the anticipated demand for appropriate B.S. and M.S. degree holders already equals or exceeds that for Ph.D.s in microbiology/immunology and related areas. The lure of higher salary in industry may be drawing off candidates for doctoral training, including some who have completed one or more years of graduate study.

David L. Rabin, M.D.
Dr. Rabin appeared on behalf of the Association of Teachers of Preventive Medicine, an organization of \(700 \mathrm{M} . \mathrm{D}\). and Ph.D. faculty in schools of medicine and public health. The Association is concerned with quantity and quality of personnel trained for prevention practice, as well as prevention and public health research, biostatistics, epidemiology, environmental health, and behavioral sciences. He alluded to the shortages of clinical prevention specialists that were projected by GMENAC and to the essentiality of federal support for residency programs. On the basis of data from the National Health Service of Scotland, he pointed to a need for 8,000 medically trained epidemiologists, as against a current supply of 1,000 epidemiologists, less than half of whom are medically trained. While the need for biostatisticians and epidemiologists has been recognized in previous reports of the committee, training support continues to be inadequate. He recommended that a national study be undertaken to define clinical and research needs to attain prevention goals. The results of such a study would facilitate the committee's setting priorities for research training.

Gordon Kaye, Ph. D.
Dr. Kaye described a continuing shortfall of personnel to fill faculty positions in departments of anatomy. He cited data since 1973, derived largely from the Association's biennial manpower survey, on the disparity between "job seekers" and "available positions." For the remainder of his presentation, he made the following observations.
1. Onerous teaching demands makn it difficult for established faculty to keep up to date on research developments and to attract external funds. At the same time, it is difficult to find faculty candidates proficient in cell and molecular biology, who can also teach any of the subjects traditionally taught in anatomy departments.
2. In a related vein, teaching for anatomy faculty in medical schools is no longer restricted to the firse year, but now includes electives in the 3 rd and 4th years. Also, the development of CAT and NMR scanning, ultrasonic lithotomy, etc., have made teaching in anatomy essential for house staff and clinical faculty.
3. In addition to categorical--predoctoral and postdoctoral-training grants, there is need for advanced postdoctoral support io permit middle-level faculty to renew their technical armamentarium. A similar support program should be instituted to re-attract individuals, such as women with Ph.D.s, who have left academic employment.
4. Funds should be made available for urewn: n- year of fulltime research training as part of the resicieni, s-ttoc: than merely cutting the number of residency positions in sesponse to changes in the financing of hospital care. The presence of such trainees in basic science departments could notably improve the likelihood of their participation in research, but also would enhance the scope of research in these departments.

\section*{George W. Bohrnstedt, Ph.D.}
1. My concern is that continued cutbacks being made in what are called "teaching costs" associated with training are begining to have a serious negative effect on our ability to do quality research training. In the past five years, the allowance for teaching costs on my training grant has declined from \(\$ 30,000\) to \(\$ 10,000\) per year, with no reduction in number of fellows and faculty participating in the program.
2. The term "teaching funds" is somewhat of a misnomer. These funds are used primarily for research needs of the trainees, e.g., the purchase of computer time, data entry costs, manuscript preparation, travel expenses for consultants, etc.
3. Sponsoring agencies should be advised that the reduction of these funds is likely to have an effect on the quality of research training we are all trying to provide. I believe we should return to a model that allows the applicant to provide and justify a teaching budget that is commensurate with a given research training program's needs.

Matthew Freund, Ph.D.
Dr. Freund spoke for the American Association of Colleges of Osteopathic Medicine. The 15 member-schools were the locus in 1982 for research totalling \(\$ 9\) million in support (including \(\$ 6\) million in federal funds). In addition, two D.O./Ph.L. training programs and two student summer research fellowship programs are currently active. He recommended that the committee's data base be extended to include information relevant to osteopathic medical schoools, and that representatives from their faculties and administration be considered for future committee and Panel appointments.

\section*{Donald W. Light, Ph.D.}
1. The committee's projections should transcend the marketplace constraints, particularly with respect to training personnel for health services research. For that field, 2 percent of recommended traineeship/fellowship awards could more reasonably approximate 7 percent.
2. It is important through NRSA to encourage the training of researchers with more applied interests in the clinical and behavioral sciences (underlining supplied).
3. The scope of behavioral science should extend beyond prisology, and the training of beiavorial scientists should \(i\) : mory cases take place directly in departments of the primǔ care specialties.
4. Post-Ph. i. training should increasingly be based on research which involves collaboration with clinicians.
5. In line with trends described in chapter 2, some \(12 \mathrm{Ph} . \mathrm{D}\). researchers have been "seeded" in all the major clinical departments of his institution.

\section*{Wiiliam Jolly, Ph.D.}
1. Inasmuch as undergraduate degrees and graduate enrollment in the biomedical sciences are declining, recruitment of predoctoral trainees should be stepped up, winile maintaining current levels of NRSA postdoctoral support.
2. The persistently low unemployment rate for Ph.D. blimedical scientists should be regarded as an indication of continuing demand, despite market shifts between the academic and industrial sectors and among specialties within the two sectors.
3. Manpower shortages in bioprocess engineering are iikely to have an important influence on the future development, commercialization, and adoption of biotechnology.
4. In light of the glamour of biotechnoiogy, special efforts will be needed to avert shortages ' \(n\) other biomedical science areas.
5. Overall biomedical Ph.D. production will continue to be closely tied to federal research support levels.

\section*{John Marshall, Ph.D.}
1. The decline in grant support available from the National Center for Health Services Research is not indicative of a decline in the neens for heali: rovices research. The staggering growth in 4 : e nation's ..: zlth costs generates a need for conceptual \(s\). Eels, technology assessment, innovative methodology, and straiegic data collection.
2. The capacity of the health selvices community to devise effective ways to assess technology, not only clinically, but in terms of costs and relative benefits is in a primitive state. Where will we find the young investiqator with apporpriate skills?
3. We are hopeful that the NCHSR will once again be able to sponsor centers of health services research with the aim of bringing together multidisciplinary skills and encouraging new approaches to policy-relevant areas like technology assessment.
4. The NCHSR has endeavored to maintain its dissertation grant program and expects to continue to fund at least 20 grants per year.
5. Hard data on health services research personnel are probably among the most difficult to obtain in the health sector. The formation of the Association for Health Services Research provides a focal point for collection of such data.

\title{
Reprinted Nationai A: emy of Sciences by the U.S. DEPARTMENT OF HFATIH AND HUMAN SERVICES \\ National Ins: t.utes of Health
}```


[^0]:    

[^1]:    ${ }^{1}$ In previous reports, awards made in the Minority Access to Research Careers (MARC) Honors Undergraduate Training Program have been counted as predoctoral awards. Starting with this report, awards in that program will be shown separately.

[^2]:    ${ }^{1}$ Investigators in the clinical sciences are seen as consisting mainly of physicians and dentists. It should be noted, however, that the committee's overall concept of a clinical investigator includes other health professionals, such as veterinarians and scientists holding the Ph.D. or equivalent degrees, whose principal activity is in the clinical sciences.

[^3]:    ${ }^{2}$ Our estimate of clinical $R$ and $D$ is based on the percentage of NIH obligations that is classified as clinical. For the past three years this percentage has held steady at 38 percent. We apply this percentage to total $R$ and $D$ expenditures in medical schools as compiled by the AAMC to arrive at estimated clinical $R$ and $D$ funds.

[^4]:    ${ }^{3}$ The issue of the recruitment of basic scientists in clinical departments has been examined in detail by this committee and a separate report on the subject will be published soon.

[^5]:    "Although the committee believes that a substantially higher percentage could be justified, it is aware that since 1970 the highest figure achieved, even for M.D. new-hires in basic science departments of medical schools, was 37 percent (Sherman and Bowden, 1982).

[^6]:    ${ }^{5}$ The model has been modified slightly from the one used in the committee's 1983 report. The monetary variable in the model, formerly the sum of clinical $R$ and $D$ expenditures and medical service income per school, has been replaced by total revenue per school. This broader measure includes revenue from state and local governments and tuition, and is thought to be a more realistic determinant of the faculty/student ratio.

[^7]:    ${ }^{7}$ The 95 percent confidence limits on this estimate are 0.406 and 0.383 , respectively. Since the most optimistic assumptions attempt to define an upper limit on our projections, we use the upper 95 percent confidence limit on CF as the most optimistic estimate.

[^8]:    ${ }^{\theta}$ Dental school demand will be treated separately in the next section of this chapter.

[^9]:    ${ }^{9}$ Eleven schools are listed by the ADA as "private-state related." In this report they are counted as private schools.
    ${ }^{10}$ Enrollment, as described here, includes predoctoral dental students and postcoctoral students in specialty and general practice residency programs at U.S. dental schools.

[^10]:    ${ }^{11}$ Data published by ADA in its Annual Report on Dental Education for 1983-84 show full-time clinical faculty at 4,130 positions. This number appears to be too high. Further examination by the ADA reveals that a new method of collecting and tabulating the data in 1983-84 overestimated the number. A recheck by the ADA yielded a count of 3,688, which is more in line with other data.

[^11]:    ${ }^{a}$ Ratio of academically employed Ph.l).s to a weighted average of total graduate and undergraduate enrollments (WS), where (WS) $=0.25(\mathrm{~L} S)_{1}+0.75(\mathrm{CS})_{1}$,
    $\left.\left(U_{S}\right)_{1}=1 / 3 U_{t}+U_{t-1}+U_{t-2}\right)$, and $\left(G S_{1}=1 / 3\left(G_{t}+G_{1-1}+G_{t-2}\right)\right.$.
    ${ }^{8}$ Since labor force data are not available for 1982, latest annual change represents average annual growth rate from 1981-83.

    - Also includes FFRDC laboratories.

    Estimated by the formula $\mathrm{U}_{1}=\left(A_{i+2} / \mathrm{B}_{1,2}\right) \mathrm{C}_{i}$ where $\mathrm{U}_{\mathrm{i}}=$ biomedical science undergraduate enrollment in year $\mathrm{i}_{1} \mathrm{~A}_{\mathrm{i}, 2}=$ biomedical science baccalaureate degrees awarded in year $i+2$ (excluding heath professions); $B_{i+2}=$ total baccalaureate degrees awarded in year $i+2 ; c_{i}=$ total undergraduate degree -credit enrollment in year $i$ i excluding first professional). The FY' 1981 figure is a preliminary estimate.

    - Represents full-time students in doctorate.granting institutions only.

[^12]:    ${ }^{1}$ These are higher than the 1 percent and 3 percent estimates used for projections to 1988 in the last report.
    ${ }^{2}$ The 95 percent confidence limits on this estimate are 0.274 and 0.236 , respectively. Since the most optimistic assumptions attempt to define an upper limit on our projections, we use the upper 95 percent confidence limit on the $F / W S$ ratio ( 0.274 ) as the most optimistic estimate.

[^13]:    ${ }^{3}$ The 95 percent cnnfsence limits on this estimate are 0.220-0.195. We use the lower jimit of 0.195 to represent the most pessimistic estimate of F/WS.

[^14]:    ${ }^{1}$ The nomenclature used in the NRC surveys was changed in 1983. Speech pathology/audiology replaced speech and hearing sciences. This field is more clinically or iented than either sociology or anthropology but it is not part of clinical psychology, and is too small (113 Ph.D.s awarded in 1983) to be considerad separately.

[^15]:    ${ }^{2}$ The data on the Ph.D. labor force came from a 16 percent sample of the doctorate population. See NRC, 1985 for a discussion of sampling error.

[^16]:    ${ }^{3}$ The enrollment data in Tables 4.1 through 4.3 come from two sources. Undergraduate enrollments are estimated from U.S. Department of Education Higher Education General Information Surveys (HEGIS). Graduate enrollments are from National Science Foundation Surveys of Graduate Students and Postdoctorals.

[^17]:    ${ }^{5}$ These and all other $R$ and $D$ expenditure figures refer to constant 1972 dollars.

